E ttore Benedetti, ${ }^{\text {a }}$ Benedetto Di B lasio, ${ }^{\text {a,b }}$ R osa Iacovino, ${ }^{\text {a,b }}$ Valeria M enchise, ${ }^{\text {a }}$ M ichele Saviano, ${ }^{\text {a }} \mathbf{C}$ arlo Pedone, ${ }^{\text {a }} \mathbf{G}$ ian M aria B onora, ${ }^{\text {c }}$ A lessandro E ttorre, ${ }^{\text {d }}$ L aura G raci, ${ }^{e}$ Fernando Formaggio, ${ }^{e} \mathbf{M}$ arco Crisma, ${ }^{e}$ Giovanni Valle ${ }^{e}$ and C laudio Toniolo ${ }^{e}$
${ }^{\text {a }}$ Biocrystallography R esearch C entre, CN R, D epartment of C hemistry, U niversity of N aples Federico II, N apoli, Italy
${ }^{\mathrm{b}}$ Faculty of Environmental Sciences, 2nd U niversity of N aples, 81100 C aserta, Italy
' P harmaco-, C hemico-, Technological Department, U niversity of C agliari, 09124 C agliari, Italy
${ }^{d}$ D epartment of C hemistry, M enarini Ricerche Sud, 00040 P omezia, Italy
${ }^{\text {e }}$ Biopolymer Research C entre, CN R, Department of Organic Chemistry, U niversity of Padova, 35131 Padova, Italy

A complete series of N - and C -blocked, monodispersed homo-oligopeptides to the pentamer level from 1-aminocycloheptane-1-carboxylic acid ($\mathrm{Ac}_{7} \mathrm{c}$), an α-amino acid conformationally restricted through $\mathrm{C}_{\mathrm{i}}{ }^{\alpha} \longleftrightarrow \mathrm{C}_{\mathrm{i}}{ }^{\alpha}$ cyclization, and three tripeptides with A $\mathrm{C}_{7} \mathrm{C}$ combined with A la, Leu, and Val residues have been synthesized by solution methods and fully characterized. T he solution conformational preferences have been determined by IR absorption and ${ }^{1} \mathrm{H}$ NM R spectroscopy. In addition, the molecular structures of three derivatives ($\mathrm{Ac}_{7} \mathrm{c}$ hydantoin, $\mathrm{CICH}_{2} \mathrm{CO}-\mathrm{Ac} \mathrm{c}_{7} \mathrm{C}-\mathrm{OH}$, and $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH} ; \mathrm{Z}=$ benzyloxycarbonyl) and four peptides [the dipeptide $\mathrm{Z}-\mathrm{A} \mathrm{c}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM}$ e, the tripeptides $\mathrm{Z}-\mathrm{A} \mathrm{c}_{7} \mathrm{c}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM}$ e and Z -($\left.\mathrm{A} \mathrm{c}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu}{ }^{\mathrm{t}}$, the tetrapeptide $\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{c}\right)_{4}-\mathrm{OBu} \mathrm{u}^{\mathrm{t}}$, and the pentapeptide $\left.\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{c}\right)_{5}-\mathrm{OBu} \mathrm{u}^{t}\right]$ have been assessed in the crystal state by X-ray diffraction. The results obtained confirm the tentative conclusions put forward on the basis of our previous preliminary study, namely that β-bends and 3_{10}-helices are preferentially adopted by A c c_{7} cbased peptides. A comparison with the structural tendencies extracted from published work on peptides from α-aminoisobutyric acid, the prototype of $\mathrm{C}^{a, \alpha}$-dialkylated glycines, and the other extensively investigated members of the class of 1-aminocycloalkane-1-carboxylic acids ($A c_{n} c$, with $n=3-6,8,9$) is made and the implications for the use of the $A c_{7} c$ residue in conformationally constrained analogues of bioactive peptides are briefly discussed.

Introduction

In recent years conformationally constrained analogues of bioactive peptides have acquired increasing popularity among medicinal chemists in an effort to firmly establish 3D structure-bioactivity relationships and to develop new pharmaceutical agents with prolonged action and/or more selective properties. ${ }^{1-5}$ In particular, conformational restriction through $\mathrm{C}_{\mathrm{i}}{ }^{\alpha} \longleftrightarrow \mathrm{C}_{\mathrm{i}}{ }^{\alpha}$ cyclization generates the family of 1-aminocycloalkane-1-carboxylic acid ($\mathrm{A}_{\mathrm{n}} \mathrm{C}$) residues. ${ }^{6}$ Theoretical and experimental studies of the preferred conformations of peptides characterized by the $A c_{n} C(n=3-6,8,9)$ residues have been the subject of recent review articles and papers. ${ }^{7-11}$ In a close parallelism to the structural behaviour of Aib (α aminoisobutyric acid or $\mathrm{C}^{\alpha, \alpha}$-dimethylglycine), ${ }^{7-9,12,13}$ the prototype of $\mathrm{C}^{u, \alpha}$-dialkylated glycines, it was shown that regular or slightly distorted β-bend forms ${ }^{14-16}$ or 3_{10}-helical structures ${ }^{17}$ are adopted as a function of main-chain length and side-chain size. The cyclopropyl-containing amino acid is the only residue of this family known to strongly prefer the 'bridge' region ($\left.\varphi= \pm 90^{\circ}, \psi=0^{\circ}\right)^{18}$ of the conformational space. This anomalous conformational propensity appears to be associated with a distorted geometry, more specifically with the observed widening of the exocyclic $\tau\left(\mathrm{N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}\right)$ bond angle to $116-117^{\circ}$.

With the aim of further contributing to our knowledge of the geometrical and structural preferences of the medium-ring residues of this family, in this work we describe the synthesis,
characterization and an extensive solution (IR absorption and ${ }^{1} \mathrm{H}$ NMR spectroscopy) conformational investigation of the homo-oligomeric series Z - $\left(\mathrm{A} \mathrm{c}_{7} \mathrm{C}\right)_{n}-\mathrm{OBu}$ ($\mathrm{A} \mathrm{c}_{7} \mathrm{c}, 1$ 1-aminocycloheptane 1-carboxylic acid; Z, benzyloxycarbonyl; OBut, tertbutoxy) ($\mathrm{n}=1-5$) and three $\mathrm{A} \mathrm{c}_{7} \mathrm{c}$-containing tripeptides. The X-ray diffraction structures of three derivatives [$\mathrm{A} \mathrm{c}_{7} \mathrm{c}$ hydantoin, $\mathrm{CIAc-Ac} \mathrm{C}_{7} \mathrm{COH}$ (CIAc , monochloracetyl), and $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-$ OH] and four peptides [the dipeptide $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM} \mathrm{M}$ (OM e , methoxy), the tripeptides $\mathrm{Z}-\mathrm{Ac}_{\mathrm{C}} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}$ and $\mathrm{Z}-\left(\mathrm{AC} \mathrm{C}_{7}\right)_{3}-\mathrm{OBu}$, the tetrapeptide $\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu}$, and the pentapeptide $\left.\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}^{\dagger}\right]$ are also reported.

Only scant information is available in the literature on bioactivity and conformational preferences of $A c_{7} \mathrm{C}$, and its derivatives and peptides. The tripeptide $\mathrm{HCO}-\mathrm{l}-\mathrm{M}$ et-A $\mathrm{c}_{7} \mathrm{C}-\mathrm{l}-\mathrm{Phe}-$ OM e shows excellent activity in the release of histamine and lysosomal enzymes. ${ }^{19,20}$ The free amino acid itself is bitter ${ }^{21}$ as it is the aspartame analogue $\mathrm{H}-\mathrm{L}-\mathrm{Asp}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OM} \mathrm{e}{ }^{22} \mathrm{An} \mathrm{A}_{7} \mathrm{C}$ based dihydroimidazol-4-one is a potent nonpeptide AT_{1} angiotensin II receptor antagonist. ${ }^{23}$ The crystal structures of H $\mathrm{Ac} \mathrm{C}_{7} \mathrm{C}-\mathrm{OH}$ hydrobromide monohydrate ${ }^{24,25}$ and the symmetrical anhydride $\left(\mathrm{Z}-\mathrm{A}_{7} \mathrm{C}\right)_{2} \mathrm{O}^{26}$ have been described. The synthesis and β-bend forming tendency of the dipeptide amides and tripeptide esters Z -Ile-A $\mathrm{c}_{7} \mathrm{C}-\mathrm{NHAr}^{27,28}$ Boc-t-A la-A $\mathrm{c}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM} \mathrm{e}$ (Boc, tert-butoxycarbonyl), ${ }^{29}$ Boc-Aib-A $\mathrm{c}_{7} \mathrm{c}-\mathrm{NHMe}$ (NHMe , methylamino), ${ }^{30}$ Boc-L-Pro-A $C_{7} C-L-A l a-O M ~ e, ~ 30 ~ a n d ~ H C O-L-~$ M et-A $c_{7} C-L-P h e O M ~ e^{20}$ have been published. Preliminary accounts of a limited part of this work have been reported. ${ }^{31,32}$

Table 1 Physical properties and analytical data for the $\mathrm{A} \mathrm{C}_{7} \mathrm{C}$ derivatives and peptides

Compound	Y ield(\%)	$\begin{aligned} & \mathrm{Mp}^{\mathrm{a}} \\ & /^{\circ} \mathrm{C} \end{aligned}$	Recrystallisation solvent ${ }^{\text {b }}$	$[\alpha]_{D}^{20 c}$	TLC ${ }^{\text {d }}$			$\mathrm{v} / \mathrm{cm}^{-1 \mathrm{e}}$
					$\mathrm{R}(\mathrm{I})_{\mathrm{F}}$	$\mathrm{R}(\mathrm{II})_{\mathrm{F}}$	$\mathrm{R}(\mathrm{III})_{\mathrm{F}}$	
(a) Derivatives								
A $\mathrm{C}_{7} \mathrm{C}$ hydantoin	38	215-216	M eOH/DE	-	0.60	-	-	3445, 3286, 1768, 1708
$\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$	40	117-118	AcOEt/LP	-	0.65	0.95	0.40	3304, 1704, 1526
5(4H)-oxazolone from $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$	97	Oil	AcOEt/LP	-	0.95	-	0.85	1825, 1683
$\mathrm{ClAc-A} \mathrm{C}_{7} \mathrm{C}-\mathrm{OH}$	54	167-170	AcOEt/LP	-	-	0.90	-	3392, 1734, 1632, 1532
$\mathrm{Z}-\mathrm{A} \mathrm{c}_{7} \mathrm{C}-\mathrm{OtBu}$ (b) Peptides	61	68-70	AcOEt/LP	-	0.95	0.95	0.85	3373, 1717, 1520
$\mathrm{Z}-\left(\begin{array}{ll}\left.\mathrm{C}_{7} \mathrm{C}\right)_{2}-\mathrm{OBu}\end{array}\right.$	62	154-156	AcOEt/LP	-	0.95	0.95	0.85	3401, 3291, 1719, 1650, 1529
	67	158-159	AcOEt/L P	-	0.95	0.95	0.60	3422, 3358, 1701, 1649, 1522
	76	223-224	AcOEt/LP	-	0.95	0.95	0.50	3429, 3352, 1705, 1675, 1527
$\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}{ }^{\text {t }}$	98	251-252	H ot toluene	-	0.90	0.95	0.45	3430, 3341, 1699, 1666, 1524
Z-A $\mathrm{c}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM} \mathrm{e}$	66	100-101	AcOEt/LP	-23.8	0.95	0.95	0.55	3321, 1733, 1688, 1651, 1537, 1519
Z-L-A la-A $c_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$-OM e	60	176-178	H ot AcOEt	-47.7	0.85	0.95	0.45	3386, 3294, 1742, 1703, 1678, 1638
$\mathrm{Z}-\left(\mathrm{A} \mathrm{C}_{7} \mathrm{C}\right)_{2}$-L-A la-OM e	62	99-101	AcOEt/DE	-21.4	0.90	0.95	0.45	3427, 3348, 1759, 1681, 1650, 1584
$\mathrm{Z}-\mathrm{Ac} \mathrm{C}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Val}-\mathrm{OM} \mathrm{e}$	72	97-98	AcOEt/L P	-14.4	0.95	0.95	0.70	3323, 1744, 1691, 1524
Boc-l-L eu-A çc-l-Val-OM e	62	150-151	AcOEt/LP	-37.7	0.95	0.95	0.45	3308, 1728, 1702, 1664, 1518

${ }^{\text {a }}$ D etermined on a Leitz M odel Laborlux 12 apparatus (Wetzlar, Germany). ${ }^{\text {b }} \mathrm{DE}$, diethyl ether; A COEt, ethyl acetate; LP, light petroleum. ${ }^{c}$ D etermined on a Perkin-EImer M odel 241 polarimeter equipped with a H aake M odel L thermostat (K arlsruhe, G ermany); c = 0.5 (M eOH). ${ }^{\text {d }}$ Silica gel plates 60F-254 (M erck) using the following solvent systems: (I) chloroform-ethanol 9:1; (II) butan-1-ol-acetic acid-water 6:2:2; (III) tolueneethanol 7:1. The compounds were revealed either with the aid of a UV lamp or with the hypochloride-starch iodide chromatic reaction. A single spot was observed in each case. ${ }^{\text {e }}$ D etermined on a Perkin-Elmer M odel 580 B spectrophotometer equipped with a Perkin-Elmer M odel 3600 IR data station and a M odel 660 printer. For the IR measurements the K Br disk technique was used.

Experimental

M aterials

Relevant physical properties and analytical data for the newly synthesized $A c_{7}$ c derivatives and peptides are listed in Table 1. In addition, the results of the amino acid analyses [C. Erba (Rodano, M ilan, Italy) M odel 3A 30 amino acid analyser] are as follows: Z-A c c_{7} C-L-A la-OM e (A la 0.98, A c $\mathrm{c}_{7} \mathrm{C} 1.01$); Z-L-A la$\mathrm{Ac}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$-OM e (Ala 1.95, A $\mathrm{c}_{7} \mathrm{C} 1.05$); Z-A $\mathrm{C}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM}$ e (A la 1.98, A $\mathrm{c}_{7} \mathrm{C} 1.02$); Z-A $\mathrm{C}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Val}-\mathrm{OM} \mathrm{e}$ (Val 0.99, A $\mathrm{c}_{7} \mathrm{C} 1.02$); Boc-L-Leu-A $c_{7} \mathrm{C}-\mathrm{L}-\mathrm{Val}-\mathrm{OM}$ e (Val 0.98, Leu 1.00, A $\mathrm{c}_{7} \mathrm{C}$ 1.02).

IR absorption spectra

Infrared absorption spectra were recorded with a Perkin-EImer (N orwalk, CT, USA) M odel 1720X FTIR spectrophotometer, nitrogen flushed, at $2 \mathrm{~cm}^{-1}$ nominal resolution, averaging 16 scans for 10 and $1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ sample concentrations or 64 scans for $0.1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ sample concentrations. Solvent (baseline) spectra were recorded under the same conditions. Cells with path lengths of $0.1,1.0$ and 10 mm (with CaF_{2} windows) were used. Spectrograde deuteriochloroform (99.8\% ${ }^{2} \mathrm{H}$) was purchased from M erck (D armstadt, G ermany).

${ }^{1}$ H N M R spectra

${ }^{1} \mathrm{H}$ NMR spectra were recorded with a Bruker (K arlsruhe, Germany) M odel AM 400 spectrometer. M easurements were carried out in [${ }^{2} \mathrm{H}$]chloroform ($99.96 \%{ }^{2} \mathrm{H}$; A Idrich, M ilwaukee, WI, USA) and in $\left[^{2} \mathrm{H}_{6}\right]$ D M SO (${ }^{2} \mathrm{H}_{6}$]dimethyl sulfoxide) ($99.96 \%{ }^{2} \mathrm{H}_{6}$; Stohler, Waltham, M A, U SA) with tetramethylsilane as the internal standard. The free radical TEM PO (2,2,6,6-tetramethyl-1-piperidyloxyl) was purchased from Sigma (St Louis, M O, U SA).

X-R ay diffraction analysis

Colourless single crystals of the $\mathrm{Ac}_{7} \mathrm{C}$ hydantoin, $\mathrm{CIAC-AC}_{7} \mathrm{C}$ $\mathrm{OH}, \mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}, \mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM} \mathrm{e}, \mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}$, $\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu}, \quad \mathrm{Z}-\left(\mathrm{A} \mathrm{c}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu}$, and $\mathrm{Z}-\left(\mathrm{A} \mathrm{C}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}$ t were grown by slow evaporation at room temp. from the solvents reported in Tables 2 and 3. The X-ray data for the three $\mathrm{A}_{7} \mathrm{C}$ derivatives were collected on a Philips PW 1100 diffractometer (E indhoven, The N etherlands), while the data for the five peptides were obtained using an Enraf-N onius CAD4 diffractometer (D elft, The N etherlands) of the Biocrystallography

Research Centre, at the U niversity of N aples Federico II. During all data collection, three reflections were measured every 120 min in order to check the stability of the crystals and the electronics. The observed intensity decreases were within 3%. The intensities were corrected for L orentz and polarization factors, but no absorption correction was applied. U nit cell determinations were carried out for all crystals by least-squares refinement of the setting angles of at least 25 high angle reflections accurately centred. Crystal data are listed in Tables 2 and 3.

The structures of the three $A c_{7} C$ derivatives $\left[A c_{7} C\right.$ hydantoin, $\mathrm{CIAC-A} \mathrm{c}_{7} \mathrm{C}-\mathrm{OH}$, and $\mathrm{Z}-\mathrm{A}_{7} \mathrm{C}-\mathrm{OH}$] were solved by direct methods and refined by the full-matrix least-squares procedure on F^{2} (all data) with anisotropic thermal factors for all non-hydrogen atoms. Hydrogen atoms of $A c_{7} \mathrm{C}$ hydantoin were calculated, and during the refinement were allowed to ride on the carrying atoms, with $U_{\text {iso }}$ set equal to 1.2 times the $U_{\text {eq }}$ of the attached atom. One carbon atom of the cycloheptanering of $\mathrm{CIAC-A} \mathrm{C}_{7} \mathrm{C}-$ $\mathrm{OH}\left(\mathrm{C}^{12}{ }_{1}\right)$ is disordered over two sites (\mathbf{A} and \mathbf{B}), which refined with population parameters of 0.50 . Hydrogen atoms of $\mathrm{CIA} C-$ $\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$ were calculated and treated as described above for those of $A c_{7} C$ hydantoin. The hydrogen atom of the two independent molecules of $\mathrm{Z}-\mathrm{Ac} \mathrm{C}_{7} \mathrm{C}-\mathrm{OH}$ belonging to the carboxy group was located on a $\Delta \mathrm{F}$ map, while the positions of all other hydrogen atoms were calculated. During the refinement all hydrogen atoms were allowed to ride on their carrying atoms, with $U_{\text {iso }}$ set equal to 1.2 (or to 1.5 for the carboxylic acid hydrogen atom) multiplied by the $U_{\text {eq }}$ of the attached atom.

The structures of the other $\mathrm{Ac}_{7} \mathrm{C}$ compounds [Z-A $\mathrm{c}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$ Ia OM e (with two crystallographically independent molecules, A and \mathbf{B}, in the asymmetric unit), $\mathrm{Z}-\mathrm{Ac} \mathrm{c}_{7} \mathrm{C}(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}, \mathrm{Z}$ $\left(\mathrm{A}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu} \mathrm{t}^{\mathrm{t}}, \mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu} \mathrm{u}^{\mathrm{t}}$, and $\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C} \mathrm{C}_{5}-\mathrm{OBu} \mathrm{u}^{\mathrm{t}}\right.$] were solved by direct methods and refined by full-matrix least-squares procedures on F^{2} (all data) for the tri-, tetra- and penta-homopeptides and on F for the other compounds. A s for $\mathrm{Z}-\left(\mathrm{A} \mathrm{c}_{7} \mathrm{C}\right)_{5}$ $O B u^{t}$, difference Fourier techniques revealed one methanol molecule with statistical disorder on two sites, which were refined with population parameters of 0.5 . Two of the carbon atoms of the cycloheptane ring in the \mathbf{B} molecule of $\mathrm{Z}-\mathrm{A}_{7} \mathrm{C}-\mathrm{L}-$ Ala-OM e ($\mathrm{C}^{\gamma_{1}}$ and $\mathrm{C}^{\gamma_{2}}{ }_{1}$) are disordered each over two sites (\mathbf{A} and \mathbf{B}), both of which were refined with population parameters of 0.60 and 0.40 . One of the carbon atoms of the cycloheptane ring of $\mathrm{Z}-\mathrm{A} \mathrm{c}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}\left(\mathrm{C}^{\gamma 1}{ }_{1}\right)$ is disordered over two sites

Table 2 Crystal data for the $\mathrm{A}_{7} \mathrm{C}$ derivatives and the dipeptide

Parameter	A $\mathrm{C}_{7} \mathrm{C}$ hydantoin	$\mathrm{CIAC-AC7} \mathrm{C-OH}$	$\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$	Z-A c7C-L-A la-OM e
M olecular formula	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{CINO}_{3}$	$\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$
Formula mass	182.2	233.7	291.3	362.5
Crystallization solvent	H ot EtOH-H2O ${ }^{\text {a }}$ (1:1)	A cetone-LP ${ }^{\text {a }}$	AcOEt-LP ${ }^{\text {a }}$	$\mathrm{CHCl}_{3}-\mathrm{MeOH}{ }^{\text {a }}$
Crystal size/mm	$0.6 \times 0.5 \times 0.4$	$0.5 \times 0.3 \times 0.1$	$0.6 \times 0.3 \times 0.3$	$0.3 \times 0.5 \times 0.4$
Crystal system	M onoclinic	M onoclinic	M onoclinic	M onoclinic
Space group	P $21 / \mathrm{c}$	P $21 / \mathrm{c}$	I 1 2/a 1 ($\mathrm{No.15)}$	P 2_{1}
Z, molecules/unit cell	4	4	16	4
a / \AA A	6.980(1)	9.827(1)	20.729(3)	9.553(2)
b/Å	6.969(1)	9.652(1)	14.375(2)	19.02(1)
c/Å	19.061(3)	12.553(2)	21.521(3)	11.587(5)
$\beta 1{ }^{\circ}$	95.5(1)	107.4(1)	97.2(1)	103.32(2)
V / \AA^{3}	992.9(2)	1136.2(7)	6362(2)	2049(2)
$\mathrm{D}_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.31	1.37	1.22	1.22
I I dependent reflections	2219	2737	7465	4023
Observed reflections	1646 [$\mathrm{F}>4 \sigma(\mathrm{~F})$]	1148 [$\mathrm{F}>4 \sigma(\mathrm{~F})$]	1261 [$\mathrm{F}>4 \sigma(\mathrm{~F})$]	3474 [I > 3 $6(1)$]
R adiation/Å	M o-K α (0.71073)	M o-K α (0.71073)	M o-K α (0.71073)	Cu-K α (1.54178)
D ata collection method	$\theta-2 \theta$	$\theta-2 \theta$	$\theta-2 \theta$	$\omega-2 \theta$
θ range	2.2-28.0	2.2-28.0	2.2-28.0	1-70
Temperature	A mbient	A mbient	A mbient	A mbient
Solved by	SHELXS 86 ${ }^{\text {b }}$	SHELXS $86{ }^{\text {b }}$	SHELXS $86{ }^{\text {b }}$	SIR 92 ${ }^{\text {g }}$
R efined by	SHELXL 93'	SHELXL 93 ${ }^{\text {c }}$	SHELXL 93'	SD $\mathrm{P}^{\text {h }}$
R value	$0.052\left(\mathrm{R}_{1}\right.$, on F$)$	0.042 (R_{1}, on F$)$	$0.04261\left(\mathrm{R}_{1}\right.$, on F$)$	0.072
R_{w} value	0.144 ($w \mathrm{R}_{2}$, on F^{2}, all data)	0.128 (wR_{2}, on F^{2}, all data)	0.211 (wR_{2}, on F^{2}, all data)	0.064
w	d	e		$1 / \sigma\left(\mathrm{F}^{2}\right)$
S	0.997	0.835	0.637	0.891
$(\Delta \mathrm{p})_{\text {max }} / \mathrm{e} \AA^{-3}$	0.375	0.275	0.336	0.394
$(\Delta \mathrm{p})_{\text {min }} / \mathrm{e} \AA^{-3}$	-0.224	-0.225	-0.200	-0.086

${ }^{\mathrm{a}} \mathrm{L} P$, light petroleum; A cOEt, ethyl acetate. ${ }^{\mathrm{b}} \mathrm{R}$ ef. 33 . ${ }^{\mathrm{c} R}$ ef. 34. ${ }^{\mathrm{d}} \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.1143 \mathrm{P})^{2}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$. ${ }^{\mathrm{e}} \mathrm{W}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0577 \mathrm{P})^{2}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3 .{ }^{\mathrm{f}} \mathrm{W}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0878 \mathrm{P})^{2}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$. ${ }^{9}$ R ef. 35. ${ }^{\mathrm{h}} \mathrm{R}$ ef. 36.

Table 3 Crystal data for the $\mathrm{A} \mathrm{c}_{7} \mathrm{C}$ tri-, tetra-, and penta-peptides

Parameter	$\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}$	$\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu}^{\text {t }}$	$\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu}^{t}$	$\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}^{\mathrm{t}}$
M olecular formula	$\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6}$	$\mathrm{C}_{36} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{6}$	$\mathrm{C}_{43} \mathrm{H}_{68} \mathrm{~N}_{4} \mathrm{O}_{7}$	$\mathrm{C}_{52} \mathrm{H}_{81} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{CH}_{3} \mathrm{OH}$
Crystallization solvent	A cOEt-LP ${ }^{\text {a }}$	CHCl_{3}	AcOEt ${ }^{\text {a }}$	Toluene
Crystal size/mm	$0.5 \times 0.3 \times 0.3$	$0.4 \times 0.5 \times 0.4$	$0.4 \times 0.5 \times 0.3$	$0.3 \times 0.5 \times 0.5$
Crystal system	M onoclinic	M onoclinic	M onoclinic	M onoclinic
Space group	P 2_{1}	P $21 / \mathrm{c}$	P $21 / n$	P $21 / \mathrm{n}$
Z, molecules/unit cell	2	4	4	4
a/Å	11.434(3)	11.904(4)	19.105(7)	12.722(2)
b/Å	11.624(2)	19.867(5)	22.663(9)	20.501(7)
c/Å	9.524(3)	16.355(6)	10.576(4)	21.937(7)
$\beta 1^{\circ}$	105.46(2)	111.2(1)	101.4(1)	104.9(1)
V / \AA^{3}	1220.1(6)	3605(2)	4489(3)	5530(3)
$\mathrm{D}_{\mathrm{d}} / \mathrm{gcm}^{-3}$	1.22	1.15	1.11	1.12
Independent reflections	2431	6823	8502	10468
Observed reflections	1994 [l > 3\%(1)]	2238 [l > 3 6 ()]	5497 [I > 2 $\sigma(1)$]	7566 [$1>2 \sigma(1)]$
R adiation/Å	Cu-K α (1.54178)	Cu-K α (1.54178)	Cu-K α (1.54178)	$\mathrm{Cu}-\mathrm{K} \alpha$ (1.54178)
D ata collection method	$\omega-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$
θ range	1-70	1-70	1-70	1-70
Temperature	A mbient	A mbient	A mbient	A mbient
Solved by	SIR 92 ${ }^{\text {b }}$			
R efined by	SDP ${ }^{\text {c }}$	SDP ${ }^{\text {c }}$	SHELXL 93 ${ }^{\text {d }}$	SHELXL 93 ${ }^{\text {d }}$
R value	0.076	0.076	$0.081{ }^{\text {e }}$	$0.086{ }^{\text {e }}$
R_{w} value	0.070	0.076	$0.161{ }^{\text {f }}$	$0.260{ }^{\text {d }}$
w	$1 / \sigma\left(\mathrm{F}^{2}\right)$	$1 / \sigma\left(\mathrm{F}^{2}\right)$	g	g
S	0.768	2.394	1.693	0.919
$(\Delta \mathrm{p})_{\max } / \mathrm{e} \AA^{-3}$	0.409	0.300	0.540	0.636
$(\Delta \mathrm{p})_{\text {min }} / \mathrm{e} \AA^{-3}$	-0.697	-0.14	-0.315	-0.225

 $\mathrm{P}=\left(\mathrm{F}_{0}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$.
(\mathbf{A} and \mathbf{B}), which were refined with population parameters of 0.80 and 0.20 . Statistical disorder over two sites (\mathbf{A} and \mathbf{B}) was also found for residue 1 of $\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu}^{\mathrm{t}}-\left(\mathrm{C}^{\gamma^{2}}{ }_{1}\right.$ with population parameters of 0.50), for residues 1 and 4 of $\mathrm{Z}-\left(\mathrm{A} \mathrm{C}_{7} \mathrm{C}\right)_{4}-$ $O B u^{\mathrm{t}}-\left(\mathrm{C}^{\gamma 1}{ }_{1}\right.$ and $\mathrm{C}^{\gamma 2}{ }_{1}$, both with population parameters of 0.60 and 0.40 , and $\mathrm{C}^{2 / 2}$ with population parameters of 0.80 and $0.20)$, and for residues 1,2 and 4 of $\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}^{\mathrm{t}}-\left(\mathrm{C}^{12}{ }_{1}\right.$ with population parameters of 0.60 and $0.40, \mathrm{C}^{\gamma 1} 2$ with population parameters of 0.80 and 0.20 , and $\mathrm{C}^{\gamma 1}{ }_{4}$ with population parameters of 0.50). In all cases the non-hydrogen atoms were refined
with anisotropic temperature factors. Positional parameters of the hydrogen atoms for $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM}$ e and $\mathrm{Z}-\mathrm{A}_{7} \mathrm{C}-(\mathrm{L}-$ Ala) $)_{2}-\mathrm{OM}$ e were stereochemically determined and introduced in the calculations with isotropic thermal parameters equal to the isotropic thermal factor of the corresponding carrier atom, but not refined. Hydrogen atoms of $A c_{7} \mathrm{C}$ homo-tri-, tetra- and penta-peptides were calculated and during the refinement were allowed to ride on their carrying atoms, with $U_{\text {iso }}$ set equal to 1.2 times the $U_{\text {eq }}$ of the attached atom.

Complete lists of bond lengths, bond angles and torsion

Fig. 1 IR absorption spectra ($3500-3250 \mathrm{~cm}^{-1}$ region) of the Z ($\mathrm{Ac}_{7} \mathrm{C}_{\mathrm{n}} \mathrm{n}^{-} \mathrm{OBu} \mathrm{a}^{\mathrm{t}}\left(\mathrm{n}=1-5\right.$) homopeptide series in CDCl_{3} solution (conc.: $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$). N umbers refer to peptide main-chain length.
angles, final positional parameters for all non-hydrogen atoms along with their thermal factors, have been deposited and are available from the Cambridge Crystallographic D ata Centre (CCDC). See 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 2, 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and reference number 188/90.

Results and D iscussion

Synthesis and characterization

$\mathrm{A}_{7} \mathrm{C}$ hydantoin ${ }^{22,29,37}$ was prepared by treatment of cycloheptanone with sodium cyanide and excess of ammonium carbonate in a 1:1 water-ethanol mixture under reflux for 6 h . Alkaline hydrolysis (with a 3 m NaOH solution) of the hydantoin, followed by acidification, afforded the free amino acid. ${ }^{21,29,38-40}$

The Z-protected $A \mathrm{C}_{7} \mathrm{C}$ derivative was obtained by reacting the free amino acid with N -(benzyloxycarbonyloxy)succinimide. Treatment of $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$ with one equivalent of N -ethyl, N^{\prime} -(3-dimethylaminopropyl)carbodiimide (EDC) gave the 5(4H)oxazolone from $\mathrm{Z}-\mathrm{A} \mathrm{c}_{7} \mathrm{C}-\mathrm{OH}$. The subsequent reaction of $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$ with the above mentioned oxazolone in an equimolar amount afforded the symmetrical anhydride (Z$\left.\mathrm{Ac} \mathrm{c}_{7}\right)_{2} \mathrm{O}{ }^{26} \mathrm{Z}-\mathrm{Ac} \mathrm{c}_{7} \mathrm{C}-\mathrm{OBu}$ was obtained by esterification of the N protected amino acid with isobutene in the presence of a catalytic amount of sulfuric acid. $\mathrm{CIAC}_{\mathrm{C}} \mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$ was synthesized by reacting $\mathrm{CIAc}-\mathrm{Cl}$ with the free amino acid in an aqueous solution at alkaline pH .
$\mathrm{Ac}_{7} \mathrm{C}-\mathrm{Ac}_{7} \mathrm{C}, \mathrm{L}-\mathrm{Ala}-\mathrm{Ac}_{7} \mathrm{C}$ and $\mathrm{Ac}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$ [the latter in the $-A C_{7} C-(\mathrm{L}-\mathrm{Ala})_{2}$-tripeptide] peptide bond formation was achieved by the symmetrical anhydride method. On the other hand, $\mathrm{Ac}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$ (in the dipeptide), $\mathrm{Ac}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Val}$, and $\mathrm{L}-\mathrm{Leu}-\mathrm{A}_{7} \mathrm{C}$ peptide bond formation was achieved using the ED C-H OBt (1-hydroxy-1,2,3-benzotriazole) method. Removal of the Z-group was performed by catalytic hydrogenation. The various peptides were characterized by melting point determination, optical rotatory power, TLC (in three solvent systems) and solidstate IR absorption spectroscopy (Table 1), amino acid analysis (Experimental section), and ${ }^{1} \mathrm{H}$ NMR spectroscopy (data not reported).

Solution conformational analysis

The conformational preferences adopted by the N - and C protected $A C_{7} \mathrm{C}$-rich peptides were determined in the structure supporting solvent CDCl_{3} by IR absorption spectroscopy and ${ }^{1} \mathrm{H}$ NM R spectroscopy as a function of concentration (over the range $10-0.1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$).

Fig. 1 shows the IR absorption spectra ($\mathrm{N}-\mathrm{H}$ stretching region) of the $\mathrm{Ac}_{7} \mathrm{C}$ homo-peptides series (from monomer through to pentamer) at $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ concentration. The

Fig. $2 I R$ absorption spectra ($3500-3200 \mathrm{~cm}^{-1}$ region) of the tripeptides $\mathrm{Z}-\mathrm{A} \mathrm{C}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}(\mathrm{A})$, Z-L-Ala-A $\mathrm{c}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$-OM e (B), Boc-L-L eu-A $\mathrm{C}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Val}-\mathrm{OM} \mathrm{e}(\mathrm{C})$, and $\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu} \mathrm{u}^{\mathrm{t}}(\mathrm{D})$ in CDCl_{3} solution (conc.: $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$)
curves of the tripeptide and the higher oligomers are characterized by two bands, at about $3428 \mathrm{~cm}^{-1}$ (free, solvated NH groups) and at $3377-3354 \mathrm{~cm}^{-1}$ (strongly H -bonded NH groups), respectively. ${ }^{41,42}$ The intensity of the low-frequency band relative to the high-frequency band increases as mainchain length increases. Concomitantly, the absorption maximum of the low-frequency band shifts markedly to lower wavenumbers. An inspection of the spectrum of the homotripeptide, compared to those of the $A c_{7} C$ containing tripeptides Z-A $\left.c_{7} C-(L-A ~ l a)\right)_{2}-O M e, Z-L-A l a-A c_{7} C-L-A l a-O M ~ e ~ a n d ~$ Boc-l-Leu-A ccc-L-Val-OM e (Fig. 2) allows us to conclude that the $3377-3351 \mathrm{~cm}^{-1}$ band is much higher (relative to the $3438-$ $3429 \mathrm{~cm}^{-1}$ band) in the homo-tripeptide. Furthermore, in the co-peptides the low-frequency band is more intense when the $\mathrm{A} \mathrm{c}_{7} \mathrm{C}$ is incorporated at position 1 than at position 2. We have also been able to demonstrate that, even at $10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ concentration, there are only marginal changes in the various peptides (not shown). Therefore, the observed band at 3377-3351 cm^{-1} should be interpreted as arising almost exclusively from intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions. The present IR absorption study has provided convincing evidence that mainchain length dependent intramolecular H -bonding is an essential factor influencing the conformation of the N - and C protected $A C_{7} \mathrm{C}$-rich peptides in CDCl_{3} solution. Our results also support the view that $A C_{7} C$ is a stronger inducer of intramolecularly H -bonded structures than the protein amino acids A la and Leu.

To get more detailed information on the preferred conformation of these peptides in CDCl_{3} solution we carried out a $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR study. The delineation of inaccessible (or intramolecularly H -bonded) NH groups by ${ }^{1} \mathrm{H}$ NMR was carried out using: (i) solvent dependence of NH chemical shifts, by adding increasing amounts of the strong H -bonding acceptor solvent DM SO ${ }^{43,44}$ to theCDCl ${ }_{3}$ solution and (ii) freeradical (TEM PO) induced line broadening of NH resonances. ${ }^{45}$ A s a typical example, Fig. 3 illustrates the behaviour of the N H resonances of the homo-pentamer upon addition of DM SO and TEMPO. The upfield resonance in CDCl_{3} solution is unequivocally assigned to the $\mathrm{N}(1) \mathrm{H}$ urethane group. ${ }^{46}$ The second upfield resonance is assigned to the $\mathrm{N}(2) \mathrm{H}$ proton by analogy with the chemical shifts in the same halohydrocarbon and the spectroscopic behaviour upon addition of the same perturbing agents of peptides from different types of $\mathrm{C}^{a, \alpha_{-}}$ dialkylated glycines. ${ }^{46-48}$ In one case a complete assignment of the NH protons was achieved from the COSY and ROESY spectra. ${ }^{48} \mathrm{~F}$ rom an analysis of the spectra as a function of concentration ($10-1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$) in CDCl_{3} solution (results not shown), we have been able to concludethat dilution induces a negligible shift to higher fields of the NH resonances of all the

Fig. 3 (A) Plot of NH chemical shifts in the ${ }^{1} H N M R$ spectrum of $\mathrm{Z}-\left(\mathrm{A} \mathrm{C}_{7} \mathrm{C}_{5}-\mathrm{OBu}\right.$ as a function of increasing percentages of DM SO added to the CDCl_{3} solution (v/v). (B) Plot of the bandwidth of the NH protons of the same peptide as a function of increasing percentages of TEM PO (mass/vol) in CDCl_{3}. Peptide concentration: $1 \mathrm{~mol}_{\mathrm{dm}}{ }^{3}$.

Fig. $4 \quad X$-R ay diffraction structure of $A C_{7} C$ hydantoin with numbering of the atoms
peptides investigated. In particular, the most sensitive N (1) H proton of the homo-pentapeptide shifts only by 0.05 ppm .

In the $\mathrm{A} \mathrm{c}_{7} \mathrm{c}$ peptides examined in the $\mathrm{CDCl}_{3}-\mathrm{DM} \mathrm{SO}$ solvent mixtures and in the presence of the paramagnetic perturbing agent TEM PO at $1 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ peptide concentration, two classes of NH protons were observed. Class (i) [N (1) H and $\mathrm{N}(2) \mathrm{H}$ protons] includes protons whose chemical shifts are extremely sensitive to the addition of DM SO and whose resonances broaden significantly upon addition of TEM PO. Interestingly, the sensitivity of the $\mathrm{N}(1) \mathrm{H}$ proton is higher than that of the N (2) H proton. Class (ii) [$N(3) \mathrm{H}$ to N (5) H protons] includes those displaying behaviour characteristic of shielded protons (relative insensitivity of chemical shifts to solvent composition and of linewidths to the presence of TEM PO).

In summary, these ${ }^{1} \mathrm{H}$ N M R results allow us to conclude that, in CDCl_{3} solution at a concentration lower than $10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$, the $N(3) \mathrm{H}$ to $\mathrm{N}(5) \mathrm{H}$ protons of all the $\mathrm{A} \mathrm{c}_{7} \mathrm{c}$ peptides studied are almost inaccessible to perturbing agents and are, therefore, most probably, intramolecularly H-bonded. In view of these I R absorption and ${ }^{1} \mathrm{H}$ NMR observations, it is reasonable to conclude that the most populated structures adopted in CDCl_{3} solution by the N - and C -protected tri-, tetra- and pentapeptides are the β-turn, two consecutive β-turns, and the $3_{10^{-}}$ helix, respectively.

C rystal-state conformational analysis

The structure of the $A c_{7} C$ hydantoin is represented in Fig. 4. As

Fig. $5 \quad \mathrm{X}-$ R ay diffraction structure of $\mathrm{CIA}_{\mathrm{C}}-\mathrm{A} \mathrm{c}_{7} \mathrm{C}-\mathrm{OH}$ with numbering of the atoms. The intramolecular H -bond is represented by a dashed line.

Fig. 6 X-Ray diffraction structure of the two independent molecules (\mathbf{A} and \mathbf{B}) in the asymmetric unit of $\mathrm{Z}-\mathrm{A}_{7} \mathrm{C}-\mathrm{OH}$
expected, the imidazolidine-2,5-dione ring is nearly planar with mean deviations of $0.002 \AA$ from the average plane. All geometrical and conformational parameters (bond lengths and bond angles, torsion angles) are in good agreement with the corresponding average values obtained from a statistical analysis of the crystal-state hydantoin-containing compounds reported in the Cambridge Crystallographic D ata Bank. Intermolecular H -bonding involves all available donors and acceptors (Table 6), with $\mathrm{N} \cdots \mathrm{O}$ distances within the average values for $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ separations. ${ }^{49-51}$
The molecular structures of $\mathrm{CIAC}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}, \mathrm{Z}-\mathrm{Ac} \mathrm{C}_{7} \mathrm{C}-\mathrm{OH}$,

Fig. $7 \quad \mathrm{X}-\mathrm{R}$ ay diffraction structure of the two independent molecules (\mathbf{A} and \mathbf{B}) in the asymmetric unit of $\mathrm{Z}-\mathrm{A} \mathrm{c}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$-OM e with numbering of the atoms

Fig. $8 \quad X-R a y$ diffraction structure of $Z-A C_{7} C-(L-A \mid a)_{2}-O M e$ with numbering of the atoms. The intramolecular H -bond is represented by a dashed line.

Z-A $\left.c_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM} \mathrm{e}, \mathrm{Z-A} \mathrm{c}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}, \mathrm{Z-(A} \mathrm{c}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu} \mathrm{t}^{\mathrm{t}}, \mathrm{Z}-$ $\left(\mathrm{A}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu} \mathrm{t}^{\mathrm{t}}$, and $\mathrm{Z}-\left(\mathrm{A} \mathrm{C}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}$ with the atomic numbering schemes are shown in Figs. 5-11. Relevant backbone and sidechain torsion angles ${ }^{52}$ are presented in Tables 4 and 5 . In Table 6 the intra- and inter-molecular H -bond parameters are listed, while the average bond distances and bond angles characterizing the seven-membered ring system of the $A c_{7} c$ residue are given in Table 7.

Bond lengths and bond angles are in general agreement with

Fig. $9 \quad \mathrm{X}-\mathrm{R}$ ay diffraction structure of $\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu} \mathrm{u}^{\mathrm{t}}$ with numbering of the atoms. The intramolecular H -bond is represented by a dashed line

Fig. $10 \quad \mathrm{X}-\mathrm{R}$ ay diffraction structure of $\mathrm{Z}-\left(\mathrm{A} \mathrm{c}_{7} \mathrm{C}\right)_{4}-\mathrm{OB} u^{t}$ with numbering of the atoms. The two intramolecular H -bonds are represented by dashed lines.
previously reported values for the geometry of the benzyloxycarbonylamino ${ }^{53}$ and monochloroacetamido ${ }^{54}$ moieties, the ester groups, ${ }^{55}$ and the peptide unit. ${ }^{56,57}$ We have also calculated the average geometry for the $A c_{7} C$ residue. The average $C-C$ bond length for the cycloheptane ring is $1.52 \AA$ (with average lengths of 1.53 and $1.54 \AA$ for the $C^{\alpha}-C^{\beta}$ bonds, 1.50 and $1.51 \AA$ for the $C^{\beta}-C^{\gamma}$ bonds, 1.52 and $1.55 \AA$ for the $C^{\gamma}-C^{\delta}$ bonds, and $1.49 \AA$ for the $\mathrm{C}^{\delta 1}-\mathrm{C}^{\delta 2}$ bond), in excellent agreement with the literature average value of $1.52 \AA$ for the $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ distance. ${ }^{58}$ The values for the $\mathrm{N}-\mathrm{C}^{\alpha}, \mathrm{C}^{a}-\mathrm{C}^{\prime}$, and $\mathrm{C}^{\prime}=0$ bond lengths fit nicely with the corresponding values for peptides based on protein amino acids. ${ }^{56} \mathrm{~T}$ he average value for the bond angles internal to the seven-membered ring is 115.1°, definitely larger than the regular tetrahedral value (109.5°). The bond angles actually vary from $112.1(5)^{\circ}$ at $C^{\gamma^{2}}$ to $117.6(5)^{\circ}$ at $C^{\beta 2}$. The average geometrical parameters for the seven-membered ring of $\mathrm{Ac}_{7} \mathrm{C}$ reported here compare well with those published for other $A C_{7} C$ residues and cycloheptane-containing compounds. ${ }^{24-26,30,59}$ In addition, the bond angles indicate an asymmetric geometry for the C^{α} atom. This observation is common also to A ib- and $A C_{n} C-(n=3-6,8,9)$ rich peptides. ${ }^{7-11}$ The value for the conformationally sensitive $\mathrm{N}-\mathrm{C}^{a}-\mathrm{C}^{\prime}(\tau)$ bond angle, external to the cyclic system, is $110.1(3)^{\circ}$, comparable to

Table 4 Selected torsion angles (${ }^{\circ}$) for the $\mathrm{Ac}_{7} \mathrm{C}$ derivatives and the dipeptide

Torsion angle	A $c_{7} \mathrm{C}$ hydantoin	$\mathrm{CIAC-A} \mathrm{c}_{7} \mathrm{C}-\mathrm{OH}$	$\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$		Z-A ç ${ }_{\text {c-L-A }}$ Ala-OM e	
			M ol. A	M ol. B	M ol. A	M ol. B
$\omega_{0}\left[\mathrm{O}_{\mathrm{u}}-\mathrm{C}^{\prime}{ }_{0}-\mathrm{N}_{1}-\mathrm{C}^{\alpha}{ }_{1}\right]$	$0.3(2){ }^{\text {a }}$	178.4(2) ${ }^{\text {c }}$	178.3(4)	169.3(4)	179.9(5)	178.4(5)
$\varphi_{1}\left[\mathrm{C}^{\prime}{ }_{0}-\mathrm{N}_{1}-\mathrm{C}^{0}{ }_{1}-\mathrm{C}^{\prime}{ }_{1}\right]$	$-0.2(2)^{\text {b }}$	-50.9(3)	-54.5(6)	-49.1(6)	-50.7(7)	$56.7(7)$
$\psi_{1}\left[\mathrm{~N}_{1}-\mathrm{C}^{1}{ }_{1}-\mathrm{C}^{1}{ }_{1}-\mathrm{N}_{2}\right]$	-0.1(1)	$-44.4(3)^{\text {d }}$	$159.3(4){ }^{\text {d }}$	$-31.8(6)^{\text {d }}$	-45.7(7)	44.0 (7)
$\omega_{1}\left[\mathrm{C}^{\alpha}{ }_{1}-\mathrm{C}^{\prime}{ }_{1}-\mathrm{N}_{2}-\mathrm{C}^{\text {a }}{ }_{2}\right]$	0.3(2)				177.0(5)	175.3(5)
$\varphi_{2}\left[\mathrm{C}^{\prime}{ }_{1}-\mathrm{N}_{2}-\mathrm{C}^{\alpha}{ }_{2}-\mathrm{C}^{\prime}{ }_{2}\right]$					-119.6(7)	-107.2(7)
$\psi_{2}\left[\mathrm{~N}_{2}-\mathrm{C}^{\alpha}{ }_{2}-\mathrm{C}^{\prime}{ }_{2}-\mathrm{O}_{\mathrm{T}}\right]$					162.0(6)	28.3(8)
$\omega_{2}\left[\mathrm{C}^{2}{ }_{2}-\mathrm{C}^{\prime}{ }_{2}-\mathrm{O}_{\mathrm{T}}-\mathrm{C}_{\mathrm{T}}\right]$					175.0(8)	$-179.5(6)$
$\chi_{1}^{1,2}\left[\mathrm{~N}_{1}-\mathrm{C}^{2}{ }_{1}-\mathrm{C}^{\beta 2}{ }_{1}-\mathrm{C}^{\gamma 2}{ }_{1}\right]$	161.2(1)	$74.9(4)[144.7(3)]^{\text {e }}$	74.8(5)	85.7(5)	$82.9(7)$	$-81.9(8)[-152(1)]^{\mathrm{e}}$
	-85.7(2)	$77.3(5)[-81.4(4)]^{\text {e }}$	-90.5(6)	$88.3(6)$	88.7(9)	$-88(1)[86(2)]^{\mathrm{e}}$
	72.7(2)	$-74.5(5)[75.8(5)]^{\text {e }}$	72.8(7)	$-74.2(7)$	-75.6(9)	$77(1)[-86(2)]^{e}$
$\chi_{1}^{4}\left[\mathrm{C}^{\gamma 1}{ }_{1}-\mathrm{C}^{\delta 1}{ }_{1}-\mathrm{C}^{\delta 2}{ }_{1}-\mathrm{C}^{\gamma 2}{ }_{1}\right]$	53.5(2)	9.2(5) $[-53.7(4)]^{\text {e }}$	60.0(8)	53.3(7)	55(1)	$\begin{aligned} & -59.1(8)[11(1)]^{\mathrm{e}} \\ & {[76(1)]^{\mathrm{e}}[61(1)]^{\mathrm{e}}} \end{aligned}$
	69.3(2)	65.3(4)	79.8(7)	-69.8(6)	-73.2(9)	$73.2(9)[-89(1)]^{e}$
$\chi_{1}^{2,1}\left[\mathrm{C}^{\alpha}{ }_{1}-\mathrm{C}^{\beta 1}{ }_{1}-\mathrm{C}^{\gamma 1}{ }_{1}-\mathrm{C}^{\delta 1}{ }_{1}\right]$	-88.3(2)	$-86.8(3)$	$-86.4(6)$	89.9(5)	89.1(8)	$-86.1(5)[91(1)]^{\mathrm{e}}$
$\chi_{1}{ }^{1,1}\left[\mathrm{~N}_{1}-\mathrm{C}^{\alpha}{ }_{1}-\mathrm{C}^{\beta 1}{ }_{1}-\mathrm{C}^{\gamma 1}{ }_{1}\right]$	-82.0(2)	-70.1(3)	149.5(4)	-168.0(4)	-163.9(6)	$-164.1(5)[80.9(9)]^{\mathrm{e}}$

${ }^{\mathrm{a}}\left[\mathrm{N}_{2}-\mathrm{C}^{\prime}{ }_{2}-\mathrm{N}_{1}-\mathrm{C}^{a}{ }_{1}\right] \cdot{ }^{\mathrm{b}}\left[\mathrm{C}^{\prime}{ }_{2}-\mathrm{N}_{1}-\mathrm{C}^{a}{ }_{1}-\mathrm{C}^{\prime}{ }_{\mathrm{I}}\right] \cdot \mathrm{c}\left[\mathrm{Cl}-\mathrm{C}^{\prime}{ }_{0}-\mathrm{N}_{1}-\mathrm{C}^{a} \mathrm{~J}\right] \cdot{ }^{\mathrm{d}}\left[\mathrm{N}_{1}-\mathrm{C}^{a}{ }_{1}-\mathrm{C}^{\prime}{ }_{1}-\mathrm{O}_{\mathrm{T}}\right]$. ${ }^{\mathrm{e}}$ Values in parentheses refer to atoms which show statistical occupancy.

Fig. $11 X$-Ray diffraction structure of $Z-\left(A c_{7} C_{5}-O B u^{t}\right.$ with numbering of the atoms. The three intramolecular H -bonds are represented by dashed lines.
that exhibited by the $\mathrm{C}^{a, \alpha}$-dialkylated glycines forming regular helices ($110-111^{\circ}$). ${ }^{7-11,60}$

All of the $A c_{7} c$ residues are found in the helical region $A(A *)$ of the conformational map, ${ }^{18}$ with the exception of that of molecule \mathbf{A} of $\mathrm{Z}-\mathrm{A} \mathrm{C}_{7} \mathrm{C}-\mathrm{OH}$ which is semi-extended. Each of the $A c_{7} C$ derivatives and homo-peptides, having no chiral atoms, crystallizes in a centrosymmetric space group; thus, in each unit cell molecules of both handedness occur simultaneously. The average values for the φ, ψ backbone torsion angles of the $\mathrm{A}_{7} \mathrm{c}$ residue completely involved in a bend or helical structure are $\pm 58.8^{\circ}, \pm 31.3^{\circ}$, close to those expected for a 3_{10} helix ($\pm 57^{\circ}$, $\left.\pm 30^{\circ}\right) .{ }^{17}$ A so the C-terminal $\mathrm{A} \mathrm{c}_{7} \mathrm{C}$ residues of thehomo- tri- and tetra-peptides adopt a conformation in the helical region, but they have opposite handedness to that shown by the preceding residues, a common observation for A ib- and $\mathrm{A} \mathrm{c}_{\mathrm{n}} \mathrm{C}$ ($\mathrm{n}=3-6,8$, 9) rich peptides. ${ }^{711,13} \mathrm{H}$ owever, the same helical handedness is maintained by the C -terminal residue of the homopentapeptide. The major conformational difference between molecules \mathbf{A} and \mathbf{B} of $\mathrm{Z}-\mathrm{A}_{7} \mathrm{C}-\mathrm{OH}$ is seen in the ψ backbone torsion angle, extended for \mathbf{A} while helical for B. A mong the various conformational differences distinguishing molecules \mathbf{A} and \mathbf{B} of the chiral dipeptide $\mathrm{Z}-\mathrm{A} \mathrm{C}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM}$ e the most relevant is the opposite handedness of the helical $A c_{7} c$ residue.

The $A c_{7} C-L-A l a$ and the N-terminal $A c_{7} C-A c_{7} C$ sequences of the two tripeptides are folded in a $1 \longleftarrow 4 \mathrm{C}=0 \cdots \mathrm{H}-\mathrm{N}$ intramolecularly H -bonded β-bend conformation. The β-bend is intermediate between type I ($\varphi_{1}=-60^{\circ}, \psi_{1}=-30^{\circ} ; \varphi_{2}=-90^{\circ}$, $\psi_{2}=0^{\circ}$) and type III ($\varphi_{1}=-60^{\circ}, \quad \psi_{1}=-30^{\circ} ; \varphi_{2}=-60^{\circ}$, $\left.\psi_{2}=-30^{\circ}\right)^{14-16}$ in the A $c_{7} c / A$ la tripeptides, whereas it is regular type III in the homo-trimer. The 1-3 sequence of the $A c_{7} \mathrm{C}$ homo-tetramer forms an incipient 3_{10}-helix (two consecutive typelll β-turn conformations) stabilized by two $1 \longleftarrow 4$ $\mathrm{C}=0 \cdots \mathrm{H}-\mathrm{N}$ intramolecular H -bonds. The backbone of the homo-pentamer is folded in a regular right(left)-handed $3_{10^{-}}$ helix. Peptide groups $\mathrm{N}_{3}-\mathrm{H}$ to $\mathrm{N}_{5}-\mathrm{H}$ and $\mathrm{C}^{\prime}{ }_{0}=\mathrm{O}_{0}$ to $\mathrm{C}^{\prime}{ }_{2}=\mathrm{O}_{2}$ participate in three consecutive $1 \longleftarrow 4 \mathrm{C}=0 \cdots \mathrm{H}-\mathrm{N}$ intramolecular H -bonds. In all bent and helical peptides the N terminal intramolecular H -bond is weak. ${ }^{49-51}$

In the seven $\mathrm{Ac}_{7} \mathrm{c}$ linear derivatives and peptides few significant deviations of the ω torsion angles from the ideal value of the trans planar urethane, amide, peptide and ester units $\left(180^{\circ}\right)$ are observed. In particular, the ω_{0} torsion angles of molecule B of $\mathrm{Z}-\mathrm{A}_{7} \mathrm{C}-\mathrm{OH}$ and of the homo-tri- and homo-penta-mer, and the ω_{3} and ω_{4} torsion angles of $\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu}{ }^{t}$ differ by little more than 10° from 180°. In CIA C-A $\mathrm{c}_{7} \mathrm{C}-\mathrm{OH}$ an intramolecular $\mathrm{Cl} \cdots \mathrm{H}-\mathrm{N}_{1}$ interaction is seen, producing a C_{5} form, ${ }^{15,54}$ the relevant $\theta^{1}\left[\mathrm{Cl}-\mathrm{C}(1)-\mathrm{C}^{\prime}{ }_{0}-\mathrm{N}_{1}\right]$ torsion angle being $13.8(4)^{\circ}$. The methyl and tert-butyl ester conformation with respect to the preceding $\mathrm{C}^{\alpha}-\mathrm{N}$ bond is intermediate between the synperiplanar and synclinal conformations in molecule A of Z-A $\mathrm{C}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$ OM e and in $\mathrm{Z}-\mathrm{A} \mathrm{C}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}$, while intermediate between the anticlinal and antiperiplanar conformations in molecule B of $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala} \mathrm{OM}$ e and in the three $\mathrm{A}_{7} \mathrm{C}$ homo-oligomers. ${ }^{61}$

Each of the ten seven-membered rings, in which statistically occupied positions are not present, is found in the twist-chair (TC) conformation, ${ }^{62-70}$ although a substantial degree of distortion from this conformation is observed. TheTC conformation, with C_{2} symmetry, is that theoretically predicted as the minimum energy conformation for a cycloheptane ring. ${ }^{70} \mathrm{~A}$ different behaviour is found for the nine $A c_{7} C$ residues of the molecules in which the statistically occupied positions for the seven-membered ring atoms occur. For these residues the most populated conformation is still the TC conformation, but a second conformation, the chair conformation (C), with C_{s} symmetry is found. ${ }^{70}$ From the analysis of the experimental data it appears that the residues in the TC conformation have average dihedral angles $\left(\chi^{4}=51^{\circ}, \chi^{3,1}=-73^{\circ}, \chi^{3,2}=-68^{\circ}\right.$, $\chi^{2,1}=87^{\circ}, \chi^{2,2}=86^{\circ}, \delta^{1,1}=-32^{\circ}$ and $\delta^{1,2}=-46^{\circ}$) similar to those calculated for this conformation $\left(\chi^{4}=54.8^{\circ}, \chi^{3}=-72.5^{\circ}\right.$, $\chi^{2}=87.8^{\circ}$ and $\left.\delta^{1}=-39.0^{\circ}\right) .{ }^{70} \mathrm{~A}$ Iso the analysis of the residues in the C conformation shows average dihedral angles ($\chi^{4}=-14^{\circ}$, $\chi^{3,1}=73^{\circ}, \quad \chi^{3,2}=-63^{\circ}, \chi^{2,1}=-78^{\circ}, \quad \chi^{2,2}=84^{\circ}, \quad \delta^{1,1}=49^{\circ}$ and

Table 5 Selected torsion angles (${ }^{\circ}$) for the $\mathrm{A}_{7} \mathrm{C}$ tri-, tetra-, and penta-peptides

Torsion angle	$\mathrm{Z}-\mathrm{AC} \mathrm{C}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OBu}{ }^{\text {t }}$	$\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu}^{\mathrm{t}}$	$\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu}{ }^{\mathrm{t}}$	$\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}{ }^{\text {t }}$
$\omega_{0}\left[\mathrm{O}_{\mathrm{u}}-\mathrm{C}^{\prime}{ }_{0}-\mathrm{N}_{1}-\mathrm{C}^{a}{ }_{1}\right]$	178.4(5)	-164.9(7)	-174.0(3)	-166.9(3)
$\varphi_{1}\left[\mathrm{C}^{\prime}{ }_{0}-\mathrm{N}_{1} \mathrm{C}^{\alpha}{ }_{1}-\mathrm{C}^{\prime}{ }_{1}\right]$	- 58.6(7)	-62(1)	-62.9(4)	-59.4(4)
$\psi_{1}\left[\mathrm{~N}_{1}-\mathrm{C}^{\alpha}{ }_{1}-\mathrm{C}^{\prime}{ }_{1}-\mathrm{N}_{2}\right]$	- 29.9(7)	-33(1)	-26.8(3)	-36.1(3)
$\omega_{1}\left[\mathrm{C}^{\alpha}{ }_{1}-\mathrm{C}^{\prime}{ }_{1}-\mathrm{N}_{2}-\mathrm{C}^{\alpha}{ }_{2}\right]$	- 176.3(5)	-174.4(7)	-176.5(2)	-171.6(2)
$\varphi_{2}\left[\mathrm{C}^{\prime}{ }_{1}-\mathrm{N}_{2}-\mathrm{C}^{\mathbf{a}}{ }_{2}-\mathrm{C}^{\prime}{ }_{2}\right]$	- 72.6(8)	-57(1)	-52.7(3)	-54.5(3)
$\psi_{2}\left[\mathrm{~N}_{2}-\mathrm{C}^{a}{ }_{2}-\mathrm{C}^{\prime}{ }_{2}-\mathrm{N}_{3}\right]$	- 20.8(9)	-32.7(9)	-31.9(3)	-32.4(3)
$\omega_{2}\left[\mathrm{C}^{2}{ }_{2}-\mathrm{C}^{\prime}{ }_{2}-\mathrm{N}_{3}-\mathrm{C}^{3}{ }_{3}{ }^{3}\right]$	179.8(6)	179.1(6)	-173.9(2)	-174.6(2)
$\varphi_{3}\left[\mathrm{C}^{\prime}{ }_{2}-\mathrm{N}_{3}-\mathrm{C}^{\mathbf{a}}{ }_{3}-\mathrm{C}^{\prime}{ }_{3}\right]$	- 69.6(8)	49.8(9)	-59.2(3)	-53.6(3)
$\psi_{3}\left[\mathrm{~N}_{3}-\mathrm{Ca}_{3}-\mathrm{C}^{\prime}{ }_{3}-\mathrm{N}_{4}\right]$	157.8(5) ${ }^{\text {a }}$	$47.9(8)^{\text {a }}$	-28.2(3)	-36.3(3)
$\omega_{3}\left[\mathrm{C}^{3}{ }_{3} \mathrm{CC}^{\prime}{ }_{3}-\mathrm{N}_{4}-\mathrm{C}^{a}{ }_{4}\right]$	$179.7(6)^{\text {b }}$	174.8(6) ${ }^{\text {b }}$	-169.4(2)	-173.9(2)
$\varphi_{4}\left[\mathrm{C}^{\prime}{ }_{3}-\mathrm{N}_{4}-\mathrm{C}^{4}{ }_{4}-\mathrm{C}^{\prime}{ }_{4}\right]$			54.7(4)	-67.6(3)
$\psi_{4}\left[\mathrm{~N}_{4}-\mathrm{C}^{4}{ }_{4}-\mathrm{C}^{\prime}{ }_{4}-\mathrm{N}_{5}\right]$			45.4(4) ${ }^{\text {d }}$	-25.7(3)
$\omega_{4}\left[\mathrm{C}^{4}{ }_{4}-\mathrm{C}^{\prime}{ }_{4}-\mathrm{N}_{5}-\mathrm{C}^{\alpha}{ }_{5}{ }^{\text {] }}\right.$]			$167.0(4)^{\text {e }}$	-174.9(2)
$\varphi_{5}\left[\mathrm{C}^{\prime}{ }_{4}-\mathrm{N}_{5}-\mathrm{C}^{a}{ }_{5}-\mathrm{C}^{\prime}{ }_{5}\right]$				-50.2(3)
$\psi_{5}\left[\mathrm{~N}_{5}-\mathrm{C}^{a}{ }_{5}-\mathrm{C}^{\prime}{ }_{5}-\mathrm{O}_{\mathrm{T}}\right]$				-49.8(3)
				-176.2(3)
	158.1(7) [-78.2(7)] ${ }^{\text {c }}$	65(1)	$62.0(5)[140.9(6)]^{\text {c }}$	60.0(4)
	94(1) $[-84.7(7)]^{\text {c }}$	84(1)	89.1(7) [$[-87(1)]^{\text {c }}$	86.6(5)
	- 81(1) [80.4(8)] ${ }^{\text {c }}$	$-54(2)$	$-66(1)[96(1)]^{\text {c }}$ c ${ }^{\text {c }}$ (1) ${ }^{\text {c }}$ c ${ }^{\text {c }}$	-49.9(8) ${ }^{\text {c }}$
$\chi_{1}^{4}\left[\mathrm{C}^{\gamma 1}{ }_{1}-\mathrm{C}^{\delta 1}{ }_{1}-\mathrm{C}^{\delta 2}{ }_{1}-\mathrm{C}^{\gamma 2}{ }_{1}\right]$	$47(1)[-22(1)]^{\text {c }}$	$-21(2)[41(2)]^{\text {c }}$	$-6(1)[-15(1)]^{\mathrm{c}}[-75(1)]^{\mathrm{c}}[54(1)]^{\text {c }}$	-24.2(9) [35(1)] ${ }^{\text {c }}$
	-53(2)	79(1) $[-78(2)]^{\text {c }}$	$68 .(1)[-80(1)]^{\text {c }}$	76.6(7) $[-69(1)]^{\text {c }}$
$\chi_{1}{ }_{1}^{2,2}\left[\mathrm{C}^{\alpha}{ }_{1}-\mathrm{C}^{\beta 2}{ }_{1}-\mathrm{C}^{\gamma 2}{ }_{1}-\mathrm{C}^{\delta 2}{ }_{1}\right]$	71(2)	-75(2) [90(2)] ${ }^{\text {c }}$	-71.3(7) [79(1)] ${ }^{\text {c }}$	-70.2(6) [79(1)] ${ }^{\text {c }}$
$\chi_{1}^{1,2}\left[N_{1}-C^{\alpha}{ }_{1}-C^{\beta 2}{ }^{\beta}-\mathrm{C}^{\gamma 2}{ }_{1}{ }^{1}\right]$	86(1)	-75(1) [-145(1)] ${ }^{\text {c }}$	$-74.6(5)[-136.1(7)]^{\text {c }}$	-75.5(4) [-142.9(8)] ${ }^{\text {c }}$
$\chi_{2}^{1,1}\left[\mathrm{~N}_{2}-\mathrm{C}^{\alpha}{ }_{2}-\mathrm{C}^{\beta 1}{ }_{2}-\mathrm{C}^{\gamma 1}{ }_{2}\right]$		87.6(9)	77.8(4)	80.9(5) [153(1)] ${ }^{\text {c }}$
$\chi_{2}^{2,1}\left[\mathrm{C}^{a}{ }_{2}-\mathrm{C}^{\beta 11}{ }_{2}-\mathrm{C}^{\gamma 1}{ }_{2}-\mathrm{C}^{\delta 1}{ }_{2}\right]$		81(1)	86.3(5)	$84.7(6)[-85(2)]^{\text {c }}$
$\chi_{2}^{3,1}\left[C^{\beta 1}{ }_{2}-C^{\gamma 1}{ }_{2}-C^{\delta 1}{ }_{2}-C^{\delta 2}{ }_{2}\right]$		-70(2)	-68.9(6)	$-67.2(8)[92(2)]^{c}$
$\chi_{2}^{4}\left[\mathrm{C}^{\gamma 1}{ }_{2}-\mathrm{C}^{\delta 1}{ }_{2}-\mathrm{C}^{\delta 2}{ }^{\text {d }}-\mathrm{C}^{\gamma 2}{ }^{2}\right]$		51(1)	53.8(8)	$48(1)[-16(1)]^{c}$
$\chi_{2}^{3,2}\left[\mathrm{C}^{\beta 2}{ }_{2}-\mathrm{C}^{\gamma 2}{ }^{\gamma}-\mathrm{C}^{\delta 2}{ }_{2}-\mathrm{C}^{\delta 1}{ }_{2}{ }^{\text {a }}\right.$]		-67(1)	-72.5(6)	$-65.4(8)$
$\chi_{2}^{2,2}\left[\mathrm{C}^{\alpha}{ }_{2}-\mathrm{C}^{\beta 2}{ }_{2}-\mathrm{Cl}^{\gamma{ }^{2}}{ }_{2}-\mathrm{C}^{\delta 2}{ }_{2}\right]$		87(1)	$89.1(5)$	87.5(5)
		-165.1(7)	$-161.4(3)$	-166.3(3)
$\chi_{3}^{1,1}{ }_{2,1}\left[\mathrm{~N}_{3}-\mathrm{C}^{\alpha}{ }_{3}-\mathrm{Cl}^{\beta 1}{ }_{3}-\mathrm{C}^{\gamma 1}{ }_{3}{ }_{3}{ }^{\text {a }}\right.$		-86.0(8)	77.3(3)	155.2(3)
$\chi_{3}^{2,1}\left[\mathrm{C}^{3}{ }_{3}-\mathrm{C}^{\beta 11}{ }_{3}-\mathrm{C}^{\gamma 11}{ }_{3}^{3}-\mathrm{C}^{\delta 1}{ }_{3}{ }^{3}\right]$		-84.6(9)	91.1(4)	-85.5(4)
$\chi_{3}^{3,1}\left[C^{\beta 1}{ }_{3}-C^{\gamma 1}{ }_{3}-C^{\delta 1}{ }_{3}-C^{\delta 2}{ }_{3}\right]$		71(1)	-70.1(5)	72.7(5)
$\chi_{3}^{4}\left[\mathrm{C}^{\gamma 1}{ }_{3}-\mathrm{C}^{\delta 1}{ }_{3}-\mathrm{C}^{\delta 2}{ }_{3}-\mathrm{C}^{\gamma 2}{ }_{3}\right]$		-53(1)	49.3(5)	-56.3(6)
		$67(1)$	-68.7(4)	73.0(5)
$\chi_{\chi^{2,2}}\left[\mathrm{C}^{\alpha}{ }_{3}-\mathrm{Cl}^{\beta 2}{ }_{3}-\mathrm{Cl}^{\gamma 2}{ }_{3}{ }^{3}-\mathrm{C}^{\delta 2}{ }_{3}{ }^{3}\right]$		-88.2(8)	88.1(4)	-90.4(4)
		167.7(6)	-159.4(2)	-78.1(3)
		-157.6(3)	$64.6(5)$ [140.2(4)] ${ }^{\text {c }}$	
			84.9(5)	93.7(7) [-77.6(7)] ${ }^{\text {c }}$
			-71.3(6)	-78.7(9) [79.0(8)] ${ }^{\text {c }}$
$\chi_{4}{ }^{4}\left[\mathrm{C}^{\gamma 1}{ }_{4}-\mathrm{C}^{\delta 1}{ }_{4}-\mathrm{C}^{\delta 2}{ }_{4}-\mathrm{C}^{\gamma 2}{ }_{4}\right]$			$57.0(7)[-13.7(7)]^{c}$	$-0.8(9)[-66.0(8)]^{\text {c }}$
			$-77.0(6)[88(1)]^{c}$	$72.2(8)$
			$\begin{aligned} & 90.5(4)[-86(1)]^{c} \\ & 83.7(3)[159.6(6)]^{c} \end{aligned}$	$-82.1(6)$ $-71.5(3)$
$\chi_{4}^{1,2}\left[\mathrm{~N}_{4}-\mathrm{C}^{\alpha}{ }_{4}-\mathrm{C}^{\beta 2}{ }^{3}{ }_{4}-\mathrm{C}^{\gamma 2}{ }_{4}{ }^{4}\right]$			$83.7(3)[159.6(6)]^{\text {c }}$	-71.5(3)
$\chi_{5}^{1,1}\left[\mathrm{~N}_{5}-\mathrm{C}^{\alpha}{ }_{5}-\mathrm{C}^{\beta 11}{ }^{\text {c }}-\mathrm{C}^{\gamma 11}{ }_{5}\right]$				92.9(4)
$\chi_{5}^{2,1}\left[\mathrm{C}^{a}{ }_{5}-C^{\beta 11}{ }_{5}-C^{\gamma 11}-C^{\text {c }}{ }^{51}{ }_{5}\right]$				81.0(5)
				-71.3(7)
$\chi_{5}^{4}\left[\mathrm{C}^{\gamma 1}{ }_{5}-\mathrm{C}^{\delta 1}{ }_{5}-\mathrm{C}^{\delta 2}{ }_{5}-\mathrm{C}^{\gamma 2}{ }_{5}{ }^{\text {a }}\right.$] ${ }^{\text {a }}$				49.4(8)
				-64.2(6)
$\chi_{5}^{2,2}\left[\mathrm{C}^{\alpha}{ }_{5}-C^{\beta 2}{ }_{5}-\mathrm{C}^{\gamma 2}{ }_{5}-\mathrm{C}^{\delta 2}{ }_{5}\right]$				91.0(4)
$\chi_{5}^{1,2}\left[\mathrm{~N}_{5}-\mathrm{C}^{\alpha}{ }_{5}-\mathrm{C}^{\beta 2}{ }_{5}-\mathrm{C}^{\gamma 2}{ }_{5}\right]$				-174.4(3)

${ }^{\mathrm{a}}\left[\mathrm{N}_{3}-\mathrm{C}^{\alpha}{ }_{3}-\mathrm{C}^{\prime}{ }_{3}-\mathrm{O}_{\mathrm{T}}\right] \cdot{ }^{\mathrm{b}}\left[\mathrm{C}^{\alpha}{ }_{3}-\mathrm{C}^{\prime}{ }_{3}-\mathrm{O}_{\mathrm{T}}-\mathrm{C}_{\mathrm{T}}\right]$. ${ }^{\mathrm{c}}$ Values in parentheses refer to atoms which show statistical occupancy. ${ }^{\mathrm{d}}\left[\mathrm{N}_{4}-\mathrm{C}^{a}{ }_{4}-\mathrm{C}^{\prime}{ }_{4}-\mathrm{O}_{\mathrm{T}}\right] . \mathrm{e}\left[\mathrm{C}^{a}{ }_{4}-\mathrm{C}^{\prime}{ }_{4}-\mathrm{O}_{\mathrm{T}}-\mathrm{C}_{\mathrm{T}}\right]$.
$\delta^{1,2}=-52^{\circ}$) similar to those calculated for this conformation $\left(\chi^{4}=1.2^{\circ}, \chi^{3,1}=67.2^{\circ}, \chi^{3,2}=-67.2^{\circ}, \chi^{2,1}=-85.6^{\circ}, \chi^{2,2}=85.6^{\circ}\right.$, $\delta^{1,1}=64.6^{\circ}$ and $\left.\delta^{1,2}=-64.6^{\circ}\right)^{70}$

In addition, it is noteworthy that for residues in the TC conformation the $\chi^{1,1}$ and $\chi^{1,2}$ side-chain torsion angles are in the (t , g^{+}) and ($\left.\mathrm{g}^{-}, \mathrm{t}\right)$ conformations for right-handed and left-handed $\mathrm{A} \mathrm{c}_{7} \mathrm{C}$ residues, respectively, while for residues in the C conformation they are in the ($\mathrm{g}^{-}, \mathrm{g}^{+}$) and ($\mathrm{g}^{+}, \mathrm{g}^{-}$) conformations for right-handed and left-handed $A c_{7}$ c residues, respectively.

The packing mode of the $\mathrm{CIAc}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$ molecules is characterized by (carboxylic acid) $\mathrm{O}_{\mathrm{T}}-\mathrm{H} \cdots \mathrm{O}_{0}=\mathrm{C}^{\prime}{ }_{0}$ (amide) intermolecular H -bonds, forming rows along the b direction. ${ }^{54}$ The geometrical parameters of this $0-\mathrm{H} \cdots \mathrm{OH}$-bond are in the ranges expected for such interactions. ${ }^{71,72}$

In the crystal of $\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$ the molecules are connected through a complex network of intermolecular H -bonds, in which $\mathrm{O}_{\mathrm{T}}-\mathrm{H} \cdots \mathrm{O}_{1} \mathrm{H}$-bonds are formed between molecules of the same type (\mathbf{A} or \mathbf{B}), whereas $\mathrm{N}_{1}-\mathrm{H} \cdots \mathrm{O}_{0} \mathrm{H}$-bonds link \mathbf{A} to B molecules.

The two independent molecules (\mathbf{A} and \mathbf{B}) of Z-A $\mathrm{c}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}$ la OM e pack together along the a direction, producing rows of molecules stabilized by four $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ intermolecular H -bonds $\left[\mathrm{N}_{1 A}-\mathrm{H} \cdots \mathrm{O}_{0 B}=\mathrm{C}^{\prime}{ }_{0 B}, \mathrm{~N}_{2 \mathrm{~A}}-\mathrm{H} \cdots \mathrm{O}_{1 B}=\mathrm{C}^{\prime}{ }_{1 B}, \mathrm{~N}_{1 B}-\mathrm{H} \cdots\right.$ $\mathrm{O}_{\mathrm{OA}}=\mathrm{C}^{\prime}{ }_{\mathrm{OA}}$ and $\mathrm{N}_{2 B}-\mathrm{H} \cdots \mathrm{O}_{1 A}=\mathrm{C}^{\prime}{ }_{1 A}$]. Then, van der Waals interactions link together rows of peptide molecules running in the b and c directions.

The Z-A $\mathrm{C}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM}$ e molecules pack together along the c direction, producing rows of molecules stabilized by (urethane) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (peptide) intermolecular H -bonds ($\mathrm{N}_{1}-\mathrm{H} \cdots \mathrm{O}_{2}=\mathrm{C}^{\prime}{ }_{2}$). In addition, the crystal structure is stabilized by van der Waals interactions in the ab plane

The packing modes of $\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu}^{\mathrm{t}}, \mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu}$ and $Z-\left(A C_{7}\right)_{5}-O B u^{t}$ molecules are similar and characterized by one intermolecular H -bond between the (urethane) $\mathrm{N}-\mathrm{H}$ of the first residue and the $C^{\prime}=0$ (peptide) of the $n-1$ residue ($\mathrm{N}_{1}-\mathrm{H} \cdots \mathrm{O}_{\mathrm{n}-1}=\mathrm{C}^{\prime}{ }_{n-1}$). These intermolecular H -bonds are established along the a direction for $\mathrm{Z}-\left(\mathrm{A}_{7} \mathrm{C}_{3}\right)_{3} \mathrm{OBu}{ }^{t}$ and Z $\left(\mathrm{A}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu}{ }^{\mathrm{t}}$ and the c direction for $\mathrm{Z}-\left(\mathrm{A} \mathrm{C}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}$ molecules,

Table 6 Intra- and inter-molecular H -bond parameters for the $\mathrm{Ac}_{7} \mathrm{C}$ derivatives and peptides

Peptide	$\begin{aligned} & \text { D onor } \\ & \text { D-H } \end{aligned}$	A cceptor A	Symmetry equiv. of A	$\begin{aligned} & \text { D istance/Å } \\ & \text { D } \cdot \cdots \mathrm{A} \end{aligned}$	$\begin{aligned} & \text { D istance/ } / \AA \\ & \text { H } \cdots \text {. } \end{aligned}$	$\begin{aligned} & \text { A ngle }\left({ }^{\circ}\right) \\ & \mathrm{D}-\mathrm{H} \cdots \mathrm{~A} \end{aligned}$
$\mathrm{AC} \mathrm{F}_{7}$ hydantoin	$\begin{aligned} & \mathrm{N}_{1}-\mathrm{H} \\ & \mathrm{~N}_{2}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2} \\ & \mathrm{O}_{1} \end{aligned}$	$\begin{aligned} & -x, \frac{1}{2}+y, \frac{1}{2}-z \\ & -x,-y, 1-z \end{aligned}$	$\begin{aligned} & 2.905(2) \\ & 2.896(2) \end{aligned}$	$\begin{aligned} & 2.082(2) \\ & 2.068(2) \end{aligned}$	$\begin{aligned} & 159.1(1) \\ & 161.9(1) \end{aligned}$
$\mathrm{ClAC}_{\text {- }} \mathrm{C}_{7} \mathrm{C}-\mathrm{OH}$	$\begin{aligned} & \mathrm{N}_{1}-\mathrm{H} \\ & \mathrm{O}_{\mathrm{T}}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{O}_{0} \end{aligned}$	$\begin{aligned} & x, y, z \\ & 2-x, y-\frac{1}{2^{\prime}}-\frac{1}{2}-z \end{aligned}$	$\begin{aligned} & 2.973(3) \\ & 2.630(3) \end{aligned}$	$\begin{aligned} & 2.513(9) \\ & 1.840(3) \end{aligned}$	$\begin{aligned} & 114.3(2) \\ & 161.3(2) \end{aligned}$
$\mathrm{Z}-\mathrm{Ac}_{7} \mathrm{C}-\mathrm{OH}$	$\begin{aligned} & N_{1} \mathrm{~B}-\mathrm{H} \\ & \mathrm{O}_{\mathrm{T}} \mathrm{~A}-\mathrm{H} \\ & \mathrm{~N}_{1} \mathrm{~A}-\mathrm{H} \\ & \mathrm{O}_{T} \mathrm{~B}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{0} \mathrm{~A} \\ & \mathrm{O}_{1} \mathrm{~A} \\ & \mathrm{O}_{0} \mathrm{~B} \\ & \mathrm{O}_{1} \mathrm{~B} \end{aligned}$	$\begin{aligned} & x, y, z \\ & \frac{3}{2}-x, \frac{3}{2}-y, \frac{3}{2}-z \\ & 2-x, y-\frac{1}{2}, \frac{3}{2}-z \\ & 2-x, 2-y, 2-z \end{aligned}$	$\begin{aligned} & 2.944(5) \\ & 2.726(5) \\ & 2.890(5) \\ & 2.606(5) \end{aligned}$	$\begin{aligned} & 2.239(5) \\ & 1.912(5) \\ & 2.069(5) \\ & 1.794(5) \end{aligned}$	$\begin{aligned} & 139.2(5) \\ & 171.8(4) \\ & 159.3(4) \\ & 170.6(4) \end{aligned}$
Z-A $\mathrm{C}_{7} \mathrm{C}-\mathrm{L}-\mathrm{Ala}-\mathrm{OM} \mathrm{e}$	$\mathrm{N}_{1} \mathrm{~B}-\mathrm{H}$ $\mathrm{N}_{2} \mathrm{~B}-\mathrm{H}$ $\mathrm{N}_{1} \mathrm{~A}-\mathrm{H}$ $\mathrm{N}_{2} \mathrm{~A}-\mathrm{H}$	$\begin{aligned} & \mathrm{O}_{0} \mathrm{~A} \\ & \mathrm{O}_{1} \mathrm{~A} \\ & \mathrm{O}_{0} \mathrm{~B} \\ & \mathrm{O}_{1} \mathrm{~B} \end{aligned}$	$\begin{aligned} & x, y, z \\ & x, y, z \\ & x+1, y, z \\ & x+1, y, z \end{aligned}$	$\begin{aligned} & 2.905(6) \\ & 2.891(6) \\ & 3.018(6) \\ & 2.973(6) \end{aligned}$	$\begin{aligned} & 1.941(4) \\ & 2.065(4) \\ & 2.050(4) \\ & 2.099(4) \end{aligned}$	$\begin{aligned} & 165.9(3) \\ & 141.1(3) \\ & 168.5(3) \\ & 147.9(4) \end{aligned}$
$\mathrm{Z}-\mathrm{Ac} \mathrm{F}_{7} \mathrm{C}-(\mathrm{L}-\mathrm{Ala})_{2}-\mathrm{OM} \mathrm{e}$	$\begin{aligned} & \mathrm{N}_{3}-\mathrm{H} \\ & \mathrm{~N}_{1}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{0} \\ & \mathrm{O}_{2} \end{aligned}$	$\begin{gathered} x, y, z \\ -x, \frac{1}{2}+y, 1-z \end{gathered}$	$\begin{aligned} & 3.117(8) \\ & 2.861(7) \end{aligned}$	$\begin{aligned} & 2.220(5) \\ & 2.066(6) \end{aligned}$	$\begin{aligned} & 154.8(4) \\ & 139.6(4) \end{aligned}$
$\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{3}-\mathrm{OBu}{ }^{\text {t }}$	$\begin{aligned} & \mathrm{N}_{3}-\mathrm{H} \\ & \mathrm{~N}_{1}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{0} \\ & \mathrm{O}_{2} \end{aligned}$	$\begin{aligned} & x, y, z \\ & 1-x,-y-\frac{1}{2^{\prime}}-z+\frac{1}{2} \end{aligned}$	$\begin{aligned} & 3.144(8) \\ & 2.930(9) \end{aligned}$	$\begin{aligned} & 2.270(5) \\ & 1.982(6) \end{aligned}$	$\begin{aligned} & 150.9(4) \\ & 172.4(4) \end{aligned}$
$\mathrm{Z}-\left(\mathrm{Ac}_{7} \mathrm{C}\right)_{4}-\mathrm{OBu}{ }^{\text {t }}$	$\begin{aligned} & \mathrm{N}_{3}-\mathrm{H} \\ & \mathrm{~N}_{4}-\mathrm{H} \\ & \mathrm{~N}_{1}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{0} \\ & \mathrm{O}_{1} \\ & \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & x, y, z \\ & x, y, z \\ & x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2} \end{aligned}$	$\begin{aligned} & 3.204(3) \\ & 3.032(3) \\ & 2.885(3) \end{aligned}$	$\begin{aligned} & 2.368(3) \\ & 2.187(3) \\ & 2.066(3) \end{aligned}$	$\begin{aligned} & 164.08(8) \\ & 167.43(8) \\ & 158.87(9) \end{aligned}$
$\mathrm{Z}-\left(\mathrm{Ac} \mathrm{F}_{7} \mathrm{C}_{5}-\mathrm{OBu}{ }^{\text {t }}\right.$	$\begin{aligned} & \mathrm{N}_{3}-\mathrm{H} \\ & \mathrm{~N}_{4}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{0} \\ & \mathrm{O}_{1} \end{aligned}$	$\begin{aligned} & x, y, z \\ & x, y, z \end{aligned}$	$\begin{aligned} & 3.205(3) \\ & 3.070(3) \end{aligned}$	$\begin{aligned} & 2.338(3) \\ & 2.261(3) \end{aligned}$	$\begin{aligned} & 158.89(8) \\ & 156.68(7) \end{aligned}$
	$\begin{aligned} & \mathrm{N}_{5}-\mathrm{H} \\ & \mathrm{~N}_{1}-\mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{O}_{2} \\ & \mathrm{O}_{4} \end{aligned}$	x, y, z $x-\frac{1}{2},-y+\frac{3}{2^{\prime}}, z-\frac{1}{2}$	$\begin{aligned} & 3.021(3) \\ & 2.888(3) \end{aligned}$	$\begin{aligned} & 2.226(3) \\ & 2.035(3) \end{aligned}$	$\begin{aligned} & 153.85(7) \\ & 167.02(7) \end{aligned}$

Table 7 Average bond distances and bond angles for the $\mathrm{A} \mathrm{c}_{7} \mathrm{C}$ residue

Bond distance $/ \AA$		Bond angle $\left(^{\circ}\right)$	
$\mathrm{N}-\mathrm{C}^{\alpha}$	$1.465(5)$	$\mathrm{N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}$	$110.1(3)$
$\mathrm{C}^{\alpha}-\mathrm{C}^{\prime}$	$1.537(6)$	$\mathrm{C}^{\beta 1}-\mathrm{C}^{\alpha}-\mathrm{C}^{\beta 2}$	$113.7(4)$
$\mathrm{C}^{\prime}-\mathrm{O}$	$1.220(6)$	$\mathrm{C}^{\alpha}-\mathrm{C}^{\beta 1}-\mathrm{C}^{\gamma 1}$	$116.6(5)$
$\mathrm{C}^{\alpha}-\mathrm{C}^{\beta 1}$	$1.534(4)$	$\mathrm{C}^{\beta 1}-\mathrm{C}^{\gamma 1}-\mathrm{C}^{\delta 1}$	$113.7(6)$
$\mathrm{C}^{\beta 1}-\mathrm{C}^{\gamma 1}$	$1.496(8)$	$\mathrm{C}^{\gamma 1}-\mathrm{C}^{\delta 1}-\mathrm{C}^{\delta 2}$	$116.7(6)$
$\mathrm{C}^{\gamma 1}-\mathrm{C}^{\delta 1}$	$1.518(9)$	$\mathrm{C}^{\delta 1} \mathrm{C}^{\delta 2}-\mathrm{C}^{\gamma 2}$	$115.5(6)$
$\mathrm{C}^{\delta 1}-\mathrm{C}^{\delta 2}$	$1.49(1)$	$\mathrm{C}^{\delta 2} \mathrm{C}^{\gamma^{2}-\mathrm{C}^{\beta 2}}$	$112.1(5)$
$\mathrm{C}^{\delta 2}-\mathrm{C}^{\gamma 2}$	$1.55(1)$	$\mathrm{C}^{\gamma 2}-\mathrm{C}^{\beta 2}-\mathrm{C}^{\alpha}$	$117.6(5)$
$\mathrm{C}^{\gamma 2}-\mathrm{C}^{\beta 2}$	$1.508(8)$	$\mathrm{N}-\mathrm{C}^{\alpha}-\mathrm{C}^{11}$	$110.6(4)$
$\mathrm{C}^{\beta 2}-\mathrm{C}^{\alpha}$	$1.536(6)$	$\mathrm{N}-\mathrm{C}^{\alpha}-\mathrm{C}^{\beta 2}$	$109.3(4)$
		$\mathrm{C}^{\prime}-\mathrm{C}^{\alpha}-\mathrm{C}^{\beta 1}$	$106.3(4)$
		$\mathrm{C}^{\prime}-\mathrm{C}^{\alpha}-\mathrm{C}^{\beta 2}$	$108.9(4)$

producing long rows of H -bonded peptide molecules. The crystal structures are further stabilized by van der Waals interactions along the other crystallographic directions. The statistical methanol molecule in the $\mathrm{Z}-\left(\mathrm{A} \mathrm{c}_{7} \mathrm{C}\right)_{5}-\mathrm{OBu}$ structure is not intermolecularly H -bonded, and is located in a solvophobic region in the crystallographic packing.

Conclusions

The experimental results described in this paper conclusively reconfirm the few and scattered data reported in previous studies. ${ }^{20,27-30}$ strongly supporting the view that the mediumring alicyclic $A c_{7} c$ residue imparts considerable restriction to the peptide backbone and is forced to adopt conformations in the $3_{10} / \alpha$-helical region of the φ, ψ space. Thus, the $\mathrm{A} \mathrm{c}_{7} \mathrm{c}$ residue can be easily accommodated in either position $i+1$ or $i+2$ of type III(III') β-bend and at the position $i+1$ of type I(I') β bend. It may also be accommodated, although with some deviation from the expected φ, ψ values, at the position $\mathrm{i}+2$ of type I(I') or type II(II') β-bends. In summary, $A c_{7} c$ has a different effective volume and hydrophobicity to A ib and $A C_{n} C$ (with
$\mathrm{n}=4-6,8,9$) residues, but all of these $\mathrm{C}^{a, \alpha}$-dialkylated glycines exhibit strictly comparable, strong conformational bias to bending and helix formation. ${ }^{7-13}$ This remarkable lack of flexibility of $A C_{7} \mathrm{C}$ is also reflected in the strictly comparable conformations found for its N - and C -protected tri-, tetra-, and pentapeptides in solution and in the crystal state.

Considerable recent interest has been focused on the development of conformationally constrained analogues of bioactive peptides. ${ }^{1-5}$ The availability of highly active, structurally restricted agonists and antagonists is of great value in delineating the nature of receptor-bound conformations. It seems reasonable to foresee that future investigations on analogues of biologically relevant peptides, incorporating A ib and $A C_{n} C$ (with $n=4-9$) residues at selected positions, will be rewarding.

Interestingly, $\mathrm{C}^{a, \alpha}$-di-n-propylglycine (D pg), ${ }^{20,28,29,73-77}$ with the same number of side-chain carbon atoms as $\mathrm{Ac}_{7} \mathrm{c}_{\text {, h }}$ has been shown to favour fully extended (C_{5}) conformations ($\varphi, \psi \cong 180$, 180°). ${ }^{15,78}$ Comparison of the conformational preferences of Dpg and $\mathrm{AC}_{7} \mathrm{C}$ serves to highlight the effect of side-chain cyclization on conformation.

Acknowledgements

The authors gratefully acknowledge M URST, the M inistry of U niversity and of Scientific and Technological Research, and the National Council of Research (CNR) of Italy, for their continuous and generous support of this research. The authors thank Dr G abriella DeVita for technical assistance.

R eferences

1 A. F. Spatola, in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, ed. B. Weinstein, Dekker, New York, 1983, vol. 7, p. 267.
2 V. J. H ruby, F. Al-Obeidy and W. K azmierski, Biochem. J., 1990 268, 249.

3 J. L. Fauchère and C. Thurieau, A dv. Drug R es., 1992, 23, 127.
4 A. Giannis and T. K olter, A ngew. Chem., Int. Ed. Engl., 1993, 32, 1244.

5 R. M . J. Liskamp, Recl. Trav. Chim. Pays-Bas, 1994, 113, 1.
6 C. Toniolo, Int. J. Pept. Protein Res., 1990, 35, 287.
7 C. Toniolo and E. Benedetti, M acromolecules, 1991, 24, 4004.
8 C. Toniolo, J anssen C him. A cta, 1993, 11, 10.
9 E. Benedetti and C. Toniolo, in Polymeric M aterials Encyclopedia, ed. J. C. Salamone, CRC Press, Boca Raton, FL, 1996, vol. 8P, p. 6472.

10 V. M oretto, F. Formaggio, M. Crisma, G. M. Bonora, C. Toniolo, E. Benedetti, A . Santini, M. Saviano, B. Di Blasio and C. Pedone, J. Pept. Sci., 1996, 2, 14.

11 M. Gatos, F. Formaggio, M. Crisma, G. Valle, C. Toniolo, G. M . Bonora, M. Saviano, R . Iacovino, V. M enchise, S. G aldiero, C. Pedone and E. Benedetti, J. Pept. Sci., 1997, in press.

12 I. L. K arle and P. Balaram, Biochemistry, 1990, 29, 6747.
13 C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone and C. Pedone, B iopolymers, 1983, 22, 205.

14 C. M. Venkatachalam, Biopolymers, 1968, 6, 1425.
15 C. Toniolo, CRC Crit. Rev. Biochem., 1980, 9, 1.
16 G. D. Rose, L. M. Gierasch and J. P. Smith, Adv. Protein Chem., 1985, 37, 1.
17 C. Toniolo and E. Benedetti, Trends Biochem. Sci., 1991, 16, 350.
18 S. S. Zimmerman, M. S. Pottle, G. N émethy and H. A. Scheraga, M acromolecules, 1977, 10, 1.
19 C. Toniolo, M. Crisma, G. Valle, G. M. Bonora, S. Polinelli, E. L. Becker, R . J. Freer, Sudhanand, R. Balaji Rao, P. Balaram and M . Sukumar, Pept. Res., 1989, 2, 275.
20 S. Prasad, R. Balaji Rao, H. Bergstrand, B. Lundquist, E. L. Becker and P. Balaram, Int. J. Pept. P rotein Res., 1996, 48, 312.
21 R. Treleano, H. D. Belitz, H. Jugel and H. Wieser, Z. Lebensm. U nters. Forsch., 1978, 167, 320.
22 J. W. Tsang, B. Schmied, R. N yfeler and M. Goodman, J. M ed. C hem., 1984, 27, 1663.
23 C. A. Bernhart, P. M. Perreaut, B. P. Ferrari, Y. A. M uneaux, J. L. A. A ssens, J. Clément, F. H audricourt, C. F. M uneaux, J. E. Taillades, M. A. Vignal, J. Gougat, P. R. Guirandou, C. A. Lacour, A . Roccon, C. F. Cazaubon, J. C. Brelière, G. Le F ur and D. N isato, J. M ed. Chem., 1993, 36, 3371
24 K. K. Chacko, R. Srinivasan and R. Zand, J. Cryst. M ol. Struct., 1971, 1, 213.
25 A. J. de Kok and C. Romers, Acta Crystallogr. Sect. B, 1980, 36, 1887.

26 M. Crisma, F. Formaggio, G. Valle, C. Toniolo, M. Saviano, R. Iacovino, L. Zaccaro and E. Benedetti, Biopolymers, 1997, 42, 1.

27 P. Wipf and H. H eimgartner, H elv. Chim. A cta, 1987, 71, 140.
28 P. Wipf and H. H eimgartner, H elv. Chim. A cta, 1988, 71, 258.
29 S. Prasad, R. Balaji R ao and P. Balaram, Biopolymers, 1995, 35, 11.
30 G. Valle, M. Crisma, C. Toniolo, Sudhanand, R. Balaji Rao, M. Sukumar and P. Balaram, Int. J. Pept. Protein Res., 1991, 38, 511.

31 C. Toniolo, M. Crisma, F. Formaggio, E. Benedetti, A. Santini, R. I acovino, M. Saviano, B. Di Blasio, C. Pedone and J. K amphuis, Pept. Sci. (Biopolymers), 1996, 40, 519.
32 C. Toniolo, M. Crisma, F. Formaggio, E. Benedetti, A. Santini, R. Iacovino, M. Saviano, B. Di Blasio, C. Pedone and J. K amphuis, in Peptides 1996, ed. R. Ramage and R. Epton, M ayflower Worldwide, K ingswinford, England, 1997, in press.
33 G. M. Sheldrick, SHELXS 86. Program for Crystal Structure Dermination, U niversity of G öttingen, G ermany, 1986.
34 G. M. Sheldrick, SHELXL 93. Program for Crystal Structure R efinement, U niversity of G öttingen, Germany, 1993.
35 A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliardi, M . C. Burla, G. Polidori and M . Camalli, J . A ppl. C rystallogr., 1992, 27, 435.
36 B. A. Frenz and A ssociates, Inc., SDP (Structure Determination Package), College Station, Texas, and Enraf-N onius, Delft, The N etherlands 1985.
37 M. Tiffeneau, B. Tchoubar and M. Saias-L ambert, Bull. Soc. C him. Fr., 1947, 445.
38 R. J. W. Cremlyn, R. M . Ellam and T. K . M itra, Ind. J. Chem., 1970, 8, 218.
39 A. W. Coulter and C. C. Fenselau, Org. M ass Spectrom., 1972, 6, 105.

40 T. A. Connors and W. C. J. Ross, J. Chem. Soc., 1960, 2119.

41 M. Palumbo, S. Da Rin, G. M. Bonora and C. Toniolo, M akromol. C hem., 1976, 177, 1477.
42 D. F. K ennedy, M. Crisma, C. Toniolo and D. Chapman, Biochemistry, 1991, 30, 6541.
43 K. D. K opple and M. Ohnishi, B iochemistry, 1969, 8, 4087.
44 D. M artin and G. H authal, in Dimethyl Sulphoxide, Van N ostrandReinhold, Wokingham, U K, 1975.
45 K. D. K opple and T. J. Schamper, J. A m. C hem. Soc., 1972, 94, 3644.
46 G. M. Bonora, C. M apelli, C. Toniolo, R. R. Wilkening and E. S. Stevens, Int. J. Biol. M acromol., 1984, 6, 179.

47 C. Toniolo, G. M. Bonora, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone and C. Pedone, M acromolecules, 1985, 18, 895.
48 M . Pantano, F. Formaggio, M. Crisma, G. M . Bonora, S. M ammi, E. Peggion, C. Toniolo, W. H. J. Boesten, Q. B. Broxterman, H. E. Schoemaker and J. K amphuis, M acromolecules, 1993, 26, 1980.

49 C. Ramakrishnan and N. Prasad, Int. J. Protein Res., 1971, 3, 209.
50 R. Taylor, O. K ennard and W. Versichel, A cta Crystallogr., Sect. B, 1984, 40, 280.
51 C. H. G örbitz, A cta C rystallogr., Sect. B, 1989, 45, 390.
52 IU PAC-IU B Commission on Biochemical Nomenclature, J. M ol. Biol., 1970, 52, 1.
53 E. Benedetti, C. Pedone, C. Toniolo, M. Dudek, G. N émethy and H. A. Scheraga, Int. J. Pept. P rotein R es., 1983, 21, 163.

54 C. Toniolo, M . Pantano, F. Formaggio, M . Crisma, G. M. Bonora, A. Aubry, D. Bayeul, A. Dautant, W. H. J. Boesten, H. E. Schoemaker and J. K amphuis, Int. J. Biol. M acromol., 1994, 16, 7.
55 W. B. Schweizer and J. D. D unitz, H elv. Chim. A cta, 1982, 65, 1547.
56 E . Benedetti, in Chemistry and Biochemistry of Amino A cids, Peptides and Proteins, ed. B. Weinstein, Dekker, New York, 1982, vol. 6, p. 105.
57 T. A shida, Y. Tsunogae, I. Tanaka and T. Yamane, A cta C rystallogr., Sect. B, 1987, 43, 212.
58 F. H. Allen, O. K ennard, D. S. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1-S19.
59 S. Ianelli, M. N ardelli, D. Belletti, B. Jamart-G régoire, A. M onaddib and P. Caubère, A cta C rystallogr., Sect. B, 1992, 48, 687.

60 Y. Paterson, S. M. Rumsey, E. Benedetti, G. N émethy and H. A. Scheraga, J. A m. C hem. Soc., 1981, 103, 2947.

61 J. D. D unitz and P. Strickler, in Structural Chemistry and M olecular Biology, ed. A. Rich and N. Davidson, Freeman, San Francisco, 1968, p. 595.
62 J. B. H endrickson, J. A m. Chem. Soc., 1961, 83, 4537.
63 J. B. H endrickson, J. A m. Chem. Soc., 1967, 89, 7036.
64 M . Bixon and S. Lifson, Tetrahedron, 1967, 23, 769.
65 D. F. Bocian, H. M . Pickett, T. C. Rounds and H. L. Strauss, J. Am. Chem. Soc., 1975, 97, 687.
66 D. F. Bocian and H. L. Strauss, J. A m. C hem. Soc., 1977, 99, 2866.
67 D. F. Bocian and H. L. Strauss, J. A m. Chem. Soc., 1977, 99, 2876.
68 G. A. Bottomley, A ust. J. Chem., 1988, 41, 1139.
69 F. H. A llen, J. A. K. H oward and N. A . Pitchford, A cta C rystallogr., Sect. B, 1993, 49, 910.
70 D. M. Ferguson and D. J. R aber, J. A m. C hem. Soc., 1989, 111, 4371.
71 I. D. Brown, A cta C rystallogr., Sect. A, 1976, 32, 24.
72 J. M itra and C. R amakrishnan, Int. J. Pept. Protein Res., 1977, 9, 27.
73 S. Prasad, S. M itra, E. Subramanian, D. Velmurugan, R. Balaji R ao and P. Balaram, Biochem. Biophys. R es. Commun., 1994, 198, 424.
74 E. Benedetti, C. Toniolo, P. Hardy, V. Barone, A. Bavoso, B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone, G. M. Bonora and I. Lingham, J. Am. Chem. Soc., 1984, 106, 8146.

75 G. M. Bonora, C. Toniolo, B. Di Blasio, V. Pavone, C. Pedone, E. Benedetti, I. Lingham and P. H ardy, J. A m. Chem. Soc., 1984, 106, 8152.
76 G. Valle, G. M. Bonora, C. Toniolo, P. M. H ardy, M. T. Leplawy and A. Redlinsky, J. Chem. Soc., Perkin Trans. 2, 1986, 885.
77 A. R. Dentino, P. A. Raji, K. K. Bhandari, M. E. Wilson and M . J. L evine, J. Biol. Chem., 1991, 266, 18460.
78 C. Toniolo and E. Benedetti, in M olecular Conformation and Biological Interactions, ed. P. Balaram and S. Ramaseshan, Indian A cademy of Sciences, Bangalore, 1991, p. 511.

Paper 7/01473B
Received 3rd M arch 1997
A ccepted 17th J une 1997

